The Startle Response to Acoustic Stimuli Near Startle Threshold: Effects of Stimulus Rise and Fall Time, Duration, and Intensity

1988 ◽  
Vol 25 (5) ◽  
pp. 607-611 ◽  
Author(s):  
Terry D. Blumenthal
2013 ◽  
Vol 110 (9) ◽  
pp. 2236-2245 ◽  
Author(s):  
A. D. Campbell ◽  
J. W. Squair ◽  
R. Chua ◽  
J. T. Inglis ◽  
M. G. Carpenter

Postural responses (PR) to a balance perturbation differ between the first and subsequent perturbations. One explanation for this first trial effect is that perturbations act as startling stimuli that initiate a generalized startle response (GSR) as well as the PR. Startling stimuli, such as startling acoustic stimuli (SAS), are known to elicit GSRs, as well as a StartReact effect, in which prepared movements are initiated earlier by a startling stimulus. In this study, a StartReact effect paradigm was used to determine if balance perturbations can also act as startle stimuli. Subjects completed two blocks of simple reaction time trials involving wrist extension to a visual imperative stimulus (IS). Each block included 15 CONTROL trials that involved a warning cue and subsequent IS, followed by 10 repeated TEST trials, where either a SAS (TESTSAS) or a toes-up support-surface rotation (TESTPERT) was presented coincident with the IS. StartReact effects were observed during the first trial in both TESTSAS and TESTPERT conditions as evidenced by significantly earlier wrist movement and muscle onsets compared with CONTROL. Likewise, StartReact effects were observed in all repeated TESTSAS and TESTPERT trials. In contrast, GSRs in sternocleidomastoid and PRs were large in the first trial, but significantly attenuated over repeated presentation of the TESTPERT trials. Results suggest that balance perturbations can act as startling stimuli. Thus first trial effects are likely PRs which are superimposed with a GSR that is initially large, but habituates over time with repeated exposure to the startling influence of the balance perturbation.


2010 ◽  
Vol 24 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Peter Walla ◽  
Maria Richter ◽  
Stella Färber ◽  
Ulrich Leodolter ◽  
Herbert Bauer

Two experiments investigate effects related to food intake in humans. In Experiment 1, we measured startle response modulation while study participants ate ice cream, yoghurt, and chocolate. Statistical analysis revealed that ice cream intake resulted in the most robust startle inhibition compared to no food. Contrasting females and males, we found significant differences related to the conditions yoghurt and chocolate. In females, chocolate elicited the lowest response amplitude followed by yoghurt and ice cream. In males, chocolate produced the highest startle response amplitude even higher than eating nothing, whereas ice cream produced the lowest. Assuming that high response amplitudes reflect aversive motivation while low response amplitudes reflect appetitive motivational states, it is interpreted that eating ice cream is associated with the most appetitive state given the alternatives of chocolate and yoghurt across gender. However, in females alone eating chocolate, and in males alone eating ice cream, led to the most appetitive state. Experiment 2 was conducted to describe food intake-related brain activity by means of source localization analysis applied to electroencephalography data (EEG). Ice cream, yoghurt, a soft drink, and water were compared. Brain activity in rostral portions of the superior frontal gyrus was found in all conditions. No localization differences between conditions occurred. While EEG was found to be insensitive, startle response modulation seems to be a reliable method to objectively quantify motivational states related to the intake of different foods.


2009 ◽  
Author(s):  
Anke Karl ◽  
Loretta Malta ◽  
Alexander Strobel ◽  
Katza Poehnitzsch ◽  
Sirko Rabe

2012 ◽  
Author(s):  
Yoshihiro S. Okazaki ◽  
Yukio Tsuchida ◽  
Masamichi Yuzawa ◽  
Keigo Minakuchi ◽  
Nozomi Notsuyama ◽  
...  

2007 ◽  
Author(s):  
Monique M. Mendoza ◽  
Jennifer K. Shannon ◽  
Shiloh E. Jordan ◽  
Yuhong He ◽  
David Tager ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document