scholarly journals Recapitulation of cell signaling events associated with astrogliosis using the brain slice preparation

2007 ◽  
Vol 100 (3) ◽  
pp. 720-726 ◽  
Author(s):  
Candice L. Damiani ◽  
James P. O?Callaghan
1994 ◽  
Vol 298 (1) ◽  
pp. 121-127 ◽  
Author(s):  
R A Kauppinen ◽  
T R M Pirttilä ◽  
S O K Auriola ◽  
S R Williams

Incorporation of 13C label from either [1-13C]glucose to glutamate C-4 and lactate C-3 or from [2-13C]acetate to glutamate C-4 was monitored in situ in a superfused brain slice preparation by using 1H-detected/13C-edited (1H/13C) n.m.r. spectroscopy. The fractional enrichments of both metabolites were determined by this means in both brain slices and acid extracts of the preparations in order to assess their 1H-n.m.r. detectabilities. The 1H/13C satellite resonances from glutamate C-4 and lactate C-3 in brain tissue were followed from 4 min onwards in the presence of 5 mM [1-13C]glucose. Fractional enrichment of glutamate C-4 in the slice preparations was higher than in their acid extracts throughout the incubation of 100 min; at 30 min the enrichment was 15.9 +/- 0.6% in the slice preparations and 10.6 +/- 0.9% in extracts and at 100 min 24.5 +/- 1.7% compared with 19.7 +/- 0.4%, respectively. In contrast, lactate C-3 reached a steady-state fractional enrichment of approx. 43% by 15 min and there was no difference between the values determined in the slice preparations and the acid extracts. There was a significant difference between the glutamate C-4 fractional enrichments in the brain slices (7.4 +/- 0.6%) and extracts (5.1 +/- 0.3%) after 60 min of incubation with [2-13C]acetate. Thus 13C label from both glucose and exogenous acetate enters a pool of glutamate that is more amenable to 1H n.m.r. detection than total acid-extracted brain biochemical glutamate, whereas lactate is labelled with full 1H n.m.r. visibility. The results are discussed in the light of the biochemical factors that affect glutamate 1H-n.m.r. susceptibility and thus its n.m.r. visibility.


2020 ◽  
Author(s):  
Carolina Gonzalez-Riano ◽  
Silvia Tapia-González ◽  
Gertrudis Perea ◽  
Candela González-Arias ◽  
Javier DeFelipe ◽  
...  

ABSTRACTBrain slice preparations are widely used for research in neuroscience. However, a high-quality preparation is essential and there is no consensus regarding stable parameters that can be used to define the status of the brain slice preparation after its collection at different time points. Thus, it is critical to establish the best experimental conditions for ex-vivo studies using brain slices for electrophysiological recording. In this study, we used a multiplatform (LC-MS and GC-MS) untargeted metabolomics-based approach to shed light on the metabolome and lipidome changes induced by the brain slice preparation process. We have found significant modifications in the levels of 300 compounds, including several lipid classes and their derivatives, as well as metabolites involved in the GABAergic pathway and the TCA cycle. All these preparation-dependent changes in the brain biochemistry should be taken into consideration for future studies to facilitate non-biased interpretations of the experimental results.


1985 ◽  
Vol 82 (3) ◽  
pp. 701-704 ◽  
Author(s):  
A Schurr ◽  
K.H Reid ◽  
M.T Tseng ◽  
H.L Edmonds ◽  
B.M Rigor

1994 ◽  
Vol 52 (1) ◽  
pp. A11
Author(s):  
M.T. Espanol ◽  
L. Litt ◽  
L.-H. Chang ◽  
T.L. James ◽  
P.R. Weinstein ◽  
...  

1991 ◽  
Vol 66 (1) ◽  
pp. 103-111 ◽  
Author(s):  
C. Jiang ◽  
G. G. Haddad

1. A brain slice preparation was used to study the hypoglossal (XII) neuronal response to anoxia. Both intra- and extracellular potassium activities (K+i,K+o) were measured by the use of ion-selective microelectrodes, and K+ flux was assessed by the use of pharmacologic blockers. 2. Extracellular recordings showed that a short period of anoxia (4 min) induced an increase in K+o of 26.4 +/- 7.5 mM (mean +/- SD, n = 20) in the XII nucleus of adult rats. 3. Intracellular recordings (n = 31) in XII neurons showed a substantial decrease in K+i during anoxia. Fourteen neurons were analyzed in detail and these showed that XII neurons depolarized to -25.3 +/- 7.7 mV, whereas K+i dropped from 93.6 +/- 14.9 to 32 +/- 9.0 mM. These results strongly suggested that K+ is lost from XII neurons during anoxia. 4. Although the extracellular space (ECS) shrank by approximately 50% during anoxia, the possibility that the increase in K+o and decrease in K+i were mainly caused by shrinkage of the ECS and swelling of intraneuronal space was excluded to a great degree because the changes in K+i and K+o during anoxia were relatively very large. 5. To study the mechanisms by which K+ is lost from XII neurons, we used several pharmacologic blockers. High concentration of ouabain (10 mM) and strophanthidin (80 microM) increased K+o from baseline (3-4 mM) to 40.9 +/- 2.5 mM (n = 6) but did not abolish an additional anoxia-induced increase in K+o, suggesting that mechanisms other than Na(+)-K(+)-adenosine triphosphatase inhibition were also responsible for the anoxia-induced K+ leakage.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document