Inactivation of Escherichia coli by ultraviolet light and hydrogen peroxide in a thin film contactor

1992 ◽  
Vol 15 (6) ◽  
pp. 259-260 ◽  
Author(s):  
G. Sham
2013 ◽  
Vol 13 (3) ◽  
pp. 782-789 ◽  
Author(s):  
Bassam Tawabini ◽  
Amjad Khalil ◽  
Basim Abussaud

This study demonstrates the reduction of Escherichia coli bacteria from contaminated water when the water is treated with advanced oxidation processes utilising the following combinations: hydrogen peroxide (H2O2) and ozone (O3), ultraviolet light (UV) and hydrogen peroxide (H2O2), and ultraviolet light (UV) and ozone (O3). Approximately 1 × 108cell/mL of E. coli were spiked into water samples contaminated with 500 ppb of methyl tertiary butyl ether (MTBE) and benzene. Water samples were then treated in a bench-scale photoreactor using 15 W low pressure (LP) and 150 W medium pressure (MP) UV lamps. Hydrogen peroxide at 20, 50 and 100 ppm and ozone at 1, 2 and 5 ppm were used along with the UV irradiation to generate the hydroxyl radicals (.OH) needed to degrade organic contaminants such as MTBE and benzene and most likely destroy bacteria. The results of the study showed that, under the study conditions, no effect of benzene or MTBE was observed on the inactivation rate of the bacteria. Moreover, results showed that the combined effect of the LP 15 W UV lamp with 2 ppm O3 or with 50 ppm H2O2 showed the highest inactivation rate of bacteria within 5 min. The H2O2/O3 process showed high disinfection capability at high dosages of peroxide (50 ppm) and O3 (2 and 5 ppm).


2020 ◽  
Author(s):  
Blake Skanes ◽  
Jordan Ho ◽  
Keith Warriner ◽  
Ryan S. Prosser

AbstractRecently an advanced oxidative process (AOP) combining H2O2 and UV-C light was observed to be effective at controlling Listeria monocytogens (Murray et al., 2018) and Escherichia coli O157:H7 and degrading chlorpyrifos residues on the surface of apples (Ho et al., 2020). Little is known about the application of AOP for the degradation of other pesticide residues. This study examined degradation of boscalid, pyraclostrobin, fenbuconazole and glyphosate by 3% (w/v) H2O2, UV-C (254 nm) irradiation and their combination on apple skin and glass. The extent of degradation was not significantly different between the AOP and optimal individual treatment. However, treatment susceptibility was different with glyphosate most effectively degraded by H2O2 exposure (up to 98% on apple, 3% (w/v) H2O2 at 30□C for 15 min) while boscalid, pyraclostrobin and fenbuconazole were more effectively degraded by UV-C (up to 88%, 100% and 70% degradation after ~11,000 mJ/cm2). Suggestions for possible causes of degradation are proposed.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 439-446 ◽  
Author(s):  
Masaaki Onda ◽  
Katsuhiro Hanada ◽  
Hirokazu Kawachi ◽  
Hideo Ikeda

Abstract DNA damage by oxidative stress is one of the causes of mutagenesis. However, whether or not DNA damage induces illegitimate recombination has not been determined. To study the effect of oxidative stress on illegitimate recombination, we examined the frequency of λbio transducing phage in the presence of hydrogen peroxide and found that this reagent enhances illegitimate recombination. To clarify the types of illegitimate recombination, we examined the effect of mutations in mutM and related genes on the process. The frequency of λbio transducing phage was 5- to 12-fold higher in the mutM mutant than in the wild type, while the frequency in the mutY and mutT mutants was comparable to that of the wild type. Because 7,8-dihydro-8-oxoguanine (8-oxoG) and formamido pyrimidine (Fapy) lesions can be removed from DNA by MutM protein, these lesions are thought to induce illegitimate recombination. Analysis of recombination junctions showed that the recombination at Hotspot I accounts for 22 or 4% of total λbio transducing phages in the wild type or in the mutM mutant, respectively. The preferential increase of recombination at nonhotspot sites with hydrogen peroxide in the mutM mutant was discussed on the basis of a new model, in which 8-oxoG and/or Fapy residues may introduce double-strand breaks into DNA.


2021 ◽  
Vol 13 (2) ◽  
pp. 3445-3453
Author(s):  
Wei Huang ◽  
Xinge Yu ◽  
Li Zeng ◽  
Binghao Wang ◽  
Atsuro Takai ◽  
...  

2020 ◽  
pp. 100111
Author(s):  
Constance Wielick ◽  
Louisa F. Ludwig-Begall ◽  
Lorène Dams ◽  
Ravo M. Razafimahefa ◽  
Pierre-Francois Demeuldre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document