Effects of cropping system and rates of nitrogen in animal slurry and mineral fertilizer on nitrate leaching from a sandy loam

1993 ◽  
Vol 9 (2) ◽  
pp. 53-57 ◽  
Author(s):  
I. K. Thomsen ◽  
J. F. Hansen ◽  
V. Kjellerup ◽  
B. T. Christensen
1991 ◽  
Vol 42 (3) ◽  
pp. 391 ◽  
Author(s):  
DR Coventry ◽  
WJ Slattery

Soil pH decline and net acidification inputs were determined for a long-term crop rotation experiment at Rutherglen in north-eastern Victoria. The rotations utilized were continuous wheat (WW), a 1 : 1 wheat-lupin sequence (WL) and continuous lupins (LL), and each rotation was cropped from 1975-1989. The soil at the site had an initial pH (0.01 mol/LCaCl2) of 6.0 (0-10 cm depth), sandy loam texture, and had a past use of grape vines and then lucerne pasture. The soil pH (0-10 cm) declined for each rotation with time (1977/78-1988/89), decreasing by about 0.8 units for WW and further decreasing with the inclusion of lupin in the rotation. Compared with the WW soil, the WL soil pH was 0.7 and 0.4 units lower at 5-10 cm and 10-15 cm depth and the LL soil pH was 1.0 and 0.8 units lower at 5-10 and 10-15 cm depth. There was no difference in pH between WW and WL below 20 cm depth, but the LL soil had a significantly lower pH to 40 cm depth. Acidification rates were calculated for the period of cropping and for the 3 rotations, with rates of 3.22, 4.11 and 5.26 kmols H+/ha.yr as net acid input for WW, WL and LL rotations. These values represent a rapid rate of soil acidification. The removal of alkalinity in grain accounted for between 15-21% of the overall calculated acidification rate for the 3 rotations. Therefore, it is likely in this cropping system that the acidification largely results from progressive nitrate leaching.


2018 ◽  
Vol 175 ◽  
pp. 91-100 ◽  
Author(s):  
Kathrin Grahmann ◽  
Nele Verhulst ◽  
Lucy Mora Palomino ◽  
Wolf-Anno Bischoff ◽  
Bram Govaerts ◽  
...  

2007 ◽  
Vol 69 (3) ◽  
pp. 189-197 ◽  
Author(s):  
Monicah Mucheru-Muna ◽  
Daniel Mugendi ◽  
James Kung’u ◽  
Jayne Mugwe ◽  
Andre Bationo

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1886
Author(s):  
Abdourahamane Issa M. Nourou ◽  
Addam Kiari Saidou ◽  
Jens B. Aune

Sowing and application of mineral and organic fertilizer is generally done manually in the Sahel, resulting in low precision and delayed application. The objective of this paper is to present a new mechanical planter (Gangaria) for the combined application of seeds and soil amendments (mineral fertilizer, compost, etc.), and to assess the effects of using this planter in pearl millet on labor use, yield and economic return. The labor study showed that the mechanized application of seeds and compost reduced time use by a factor of more than six. The on-station experiments were completely randomized experiments with six replications and six treatments: T0 (control), T1 (0.3 g NPK hill−1), T2 (25 g compost hill−1), T3 (25 g compost + 0.3 g NPK hill−1), T4 (50 g compost hill−1) and T5 (50 g compost + 0.3 g NPK hill−1). Treatments T1 to T5 were sown by the planter with seeds that were primed in combination with coating of seeds with a fungicide/insecticide. The treatment T5 increased grain yield and economic return compared to the control by 113% and 106%, respectively. The advantages for farmers using this approach of agricultural intensification are timelier sowing of dryland cereal crops, easy application of organic fertilizer and more precise delivery of input, thereby making this cropping system more productive and less vulnerable to drought.


2014 ◽  
Vol 153 (8) ◽  
pp. 1412-1421 ◽  
Author(s):  
A. IBRAHIM ◽  
D. PASTERNAK ◽  
D. FATONDJI

SUMMARYA study was carried out in the rainy seasons of 2008 and 2009 in Niger to investigate the effects of fertilizer micro-dosing on root development, yield and soil nutrient exploitation of pearl millet. Different rates of diammonium phosphate (DAP) were applied to the soil at different depths and it was found that although micro-dosing with DAP increased grain yield over the unfertilized control to a similar level as broadcast DAP, doubling the micro-dosage did not increase it further. Increasing the depth of fertilizer application from 5 to 10 cm resulted in significant increases in root length density, and deep application of fertilizer resulted in higher yields, although the increases were generally not significant. It was postulated that the positive effect of micro-dosing resulted from better exploitation of soil nutrients because of the higher root volume. Levels of nutrients exported from the soil were at least as high in plants receiving micro-dosing as the unfertilized control, and plants receiving micro-dosing exported 5–10 times more phosphorus from the soil than the amount added through fertilization.


Sign in / Sign up

Export Citation Format

Share Document