Expression patterns of the rogue Hox genes Hox3/zen and fushi tarazu in the apterygote insect Thermobia domestica

2004 ◽  
Vol 6 (6) ◽  
pp. 393-401 ◽  
Author(s):  
Cynthia L. Hughes ◽  
Paul Z. Liu ◽  
Thomas C. Kaufman
Development ◽  
2002 ◽  
Vol 129 (5) ◽  
pp. 1225-1238 ◽  
Author(s):  
Cynthia L. Hughes ◽  
Thomas C. Kaufman

The diversity of the arthropod body plan has long been a fascinating subject of study. A flurry of recent research has analyzed Hox gene expression in various arthropod groups, with hopes of gaining insight into the mechanisms that underlie their evolution. The Hox genes have been analyzed in insects, crustaceans and chelicerates. However, the expression patterns of the Hox genes have not yet been comprehensively analyzed in a myriapod. We present the expression patterns of the ten Hox genes in a centipede, Lithobius atkinsoni, and compare our results to those from studies in other arthropods. We have three major findings. First, we find that Hox gene expression is remarkably dynamic across the arthropods. The expression patterns of the Hox genes in the centipede are in many cases intermediate between those of the chelicerates and those of the insects and crustaceans, consistent with the proposed intermediate phylogenetic position of the Myriapoda. Second, we found two ‘extra’ Hox genes in the centipede compared with those in Drosophila. Based on its pattern of expression, Hox3 appears to have a typical Hox-like role in the centipede, suggesting that the novel functions of the Hox3 homologs zen and bicoid were adopted somewhere in the crustacean-insect clade. In the centipede, the expression of the gene fushi tarazu suggests that it has both a Hox-like role (as in the mite), as well as a role in segmentation (as in insects). This suggests that this dramatic change in function was achieved via a multifunctional intermediate, a condition maintained in the centipede. Last, we found that Hox expression correlates with tagmatic boundaries, consistent with the theory that changes in Hox genes had a major role in evolution of the arthropod body plan.


2020 ◽  
Vol 27 ◽  
Author(s):  
Ji-Yeon Lee ◽  
Myoung Hee Kim

: HOX genes belong to the highly conserved homeobox superfamily, responsible for the regulation of various cellular processes that control cell homeostasis, from embryogenesis to carcinogenesis. The abnormal expression of HOX genes is observed in various cancers, including breast cancer; they act as oncogenes or as suppressors of cancer, according to context. In this review, we analyze HOX gene expression patterns in breast cancer and examine their relationship, based on the three-dimensional genome structure of the HOX locus. The presence of non-coding RNAs, embedded within the HOX cluster, and the role of these molecules in breast cancer have been reviewed. We further evaluate the characteristic activity of HOX protein in breast cancer and its therapeutic potential.


Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1449-1466 ◽  
Author(s):  
C.E. Nelson ◽  
B.A. Morgan ◽  
A.C. Burke ◽  
E. Laufer ◽  
E. DiMambro ◽  
...  

The vertebrate Hox genes have been shown to be important for patterning the primary and secondary axes of the developing vertebrate embryo. The function of these genes along the primary axis of the embryo has been generally interpreted in the context of positional specification and homeotic transformation of axial structures. The way in which these genes are expressed and function during the development of the secondary axes, particularly the limb, is less clear. In order to provide a reference for understanding the role of the Hox genes in limb patterning, we isolated clones of 23 Hox genes expressed during limb development, characterized their expression patterns and analyzed their regulation by the signalling centers which pattern the limb. The expression patterns of the Abd-B-related Hoxa and Hoxd genes have previously been partially characterized; however, our study reveals that these genes are expressed in patterns more dynamic and complex than generally appreciated, only transiently approximating simple, concentric, nested domains. Detailed analysis of these patterns suggests that the expression of each of the Hoxa and Hoxd genes is regulated in up to three independent phases. Each of these phases appears to be associated with the specification and patterning of one of the proximodistal segments of the limb (upper arm, lower arm and hand). Interestingly, in the last of these phases, the expression of the Hoxd genes violates the general rule of spatial and temporal colinearity of Hox gene expression with gene order along the chromosome. In contrast to the Abd-B-related Hoxa and Hoxd genes, which are expressed in both the fore and hind limbs, different sets of Hoxc genes are expressed in the two limbs. There is a correlation between the relative position of these genes along the chromosome and the axial level of the limb bud in which they are expressed. The more 3′ genes are expressed in the fore limb bud while the 5′ genes are expressed in the hind limb bud; intermediate genes are transcribed in both limbs. However, there is no clear correlation between the relative position of the genes along the chromosome and their expression domains within the limb. With the exception of Hoxc-11, which is transcribed in a posterior portion of the hind limb, Hoxc gene expression is restricted to the anterior/proximal portion of the limb bud. Importantly, comparison of the distributions of Hoxc-6 RNA and protein products reveals posttranscriptional regulation of this gene, suggesting that caution must be exercised in interpreting the functional significance of the RNA distribution of any of the vertebrate Hox genes. To understand the genesis of the complex patterns of Hox gene expression in the limb bud, we examined the propagation of Hox gene expression relative to cell proliferation. We find that shifts in Hox gene expression cannot be attributed to passive expansion due to cell proliferation. Rather, phase-specific Hox gene expression patterns appear to result from a context-dependent response of the limb mesoderm to Sonic hedgehog. Sonic hedgehog (the patterning signal from the Zone of Polarizing Activity) is known to be able to activate Hoxd gene expression in the limb. Although we find that Sonic hedgehog is capable of initiating and polarizing Hoxd gene expression during both of the latter two phases of Hox gene expression, the specific patterns induced are not determined by the signal, but depend upon the temporal context of the mesoderm receiving the signal. Misexpression of Sonic hedgehog also reveals that Hoxb-9, which is normally excluded from the posterior mesenchyme of the leg, is negatively regulated by Sonic hedgehog and that Hoxc-11, which is expressed in the posterior portion of the leg, is not affected by Sonic hedgehog and hence is not required to pattern the skeletal elements of the lower leg.


Development ◽  
1999 ◽  
Vol 126 (4) ◽  
pp. 759-769 ◽  
Author(s):  
M. Manzanares ◽  
S. Cordes ◽  
L. Ariza-McNaughton ◽  
V. Sadl ◽  
K. Maruthainar ◽  
...  

During anteroposterior patterning of the developing hindbrain, the anterior expression of 3′ Hox genes maps to distinct rhombomeric boundaries and, in many cases, is upregulated in specific segments. Paralogous genes frequently have similar anterior boundaries of expression but it is not known if these are controlled by common mechanisms. The expression of the paralogous Hoxa3 and Hoxb3 genes extends from the posterior spinal cord up to the rhombomere (r) 4/5 boundary and both genes are upregulated specifically in r5. However, in this study, we have found that Hoxa3 expression is also upregulated in r6, showing that there are differences in segmental expression between paralogues. We have used transgenic analysis to investigate the mechanisms underlying the pattern of segmental expression of Hoxa3. We found that the intergenic region between Hoxa3 and Hoxa4 contains several enhancers, which summed together mediate a pattern of expression closely resembling that of the endogenous Hoxa3 gene. One enhancer specifically directs expression in r5 and r6, in a manner that reflects the upregulation of the endogenous gene in these segments. Deletion analysis localized this activity to a 600 bp fragment that was found to contain a single high-affinity binding site for the Maf bZIP protein Krml1, encoded by the kreisler gene. This site is necessary for enhancer activity and when multimerized it is sufficient to direct a kreisler-like pattern in transgenic embryos. Furthermore the r5/r6 enhancer activity is dependent upon endogenous kreisler and is activated by ectopic kreisler expression. This demonstrates that Hoxa3, along with its paralog Hoxb3, is a direct target of kreisler in the mouse hindbrain. Comparisons between the Krml1-binding sites in the Hoxa3 and Hoxb3 enhancers reveal that there are differences in both the number of binding sites and way that kreisler activity is integrated and restricted by these two control regions. Analysis of the individual sites revealed that they have different requirements for mediating r5/r6 and dorsal roof plate expression. Therefore, the restriction of Hoxb3 to r5 and Hoxa3 to r5 and r6, together with expression patterns of Hoxb3 in other vertebrate species suggests that these regulatory elements have a common origin but have later diverged during vertebrate evolution.


Development ◽  
1998 ◽  
Vol 125 (18) ◽  
pp. 3543-3551 ◽  
Author(s):  
S. Bel ◽  
N. Core ◽  
M. Djabali ◽  
K. Kieboom ◽  
N. Van der Lugt ◽  
...  

In Drosophila and mouse, Polycomb group genes are involved in the maintenance of homeotic gene expression patterns throughout development. Here we report the skeletal phenotypes of compound mutants for two Polycomb group genes bmi1 and M33. We show that mice deficient for both bmi1 and M33 present stronger homeotic transformations of the axial skeleton as compared to each single Polycomb group mutant, indicating strong dosage interactions between those two genes. These skeletal transformations are accompanied with an enhanced shift of the anterior limit of expression of several Hox genes in the somitic mesoderm. Our results demonstrate that in mice the Polycomb group genes act in synergy to control the nested expression pattern of some Hox genes in somitic mesodermal tissues during development.


Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 579-595 ◽  
Author(s):  
B.G. Condie ◽  
M.R. Capecchi

Gene targeting in embryo-derived stem (ES) cells was used to generate mice with a disruption in the homeobox-containing gene Hoxd-3 (Hox-4.1). Mice homozygous for this mutation show a radically remodeled craniocervical joint. The anterior arch of the atlas is transformed to an extension of the basioccipital bone of the skull. The lateral masses of the atlas also assume a morphology more closely resembling the exoccipitals and, to a variable extent, fuse with the exoccipitals. Formation of the second cervical vertebra, the axis, is also affected. The dens and the superior facets are deleted, and the axis shows ‘atlas-like’ characteristics. An unexpected observation is that different parts of the same vertebra are differentially affected by the loss of Hoxd-3 function. Some parts are deleted, others are homeotically transformed to more anterior structures. These observations suggest that one role of Hox genes may be to differentially control the proliferation rates of the mesenchymal condensations that give rise to the vertebral cartilages. Within the mouse Hox complex, paralogous genes not only encode very similar proteins but also often exhibit very similar expression patterns. Therefore, it has been postulated that paralogous Hox genes would perform similar roles. Surprisingly, however, no tissues or structures are affected in common by mutations in the two paralogous genes, Hoxa-3 and Hoxd-3.


2019 ◽  
Vol 117 (1) ◽  
pp. 503-512 ◽  
Author(s):  
Pin Huan ◽  
Qian Wang ◽  
Sujian Tan ◽  
Baozhong Liu

In contrast to the Hox genes in arthropods and vertebrates, those in molluscs show diverse expression patterns with differences reported among lineages. Here, we investigate 2 phylogenetically distant molluscs, a gastropod and a polyplacophoran, and show that the Hox expression in both species can be divided into 2 categories. The Hox expression in the ventral ectoderm generally shows a canonical staggered pattern comparable to the patterns of other bilaterians and likely contributes to ventral patterning, such as neurogenesis. The other category of Hox expression on the dorsal side is strongly correlated with shell formation and exhibits lineage-specific characteristics in each class of mollusc. This generalized model of decoupled dorsoventral Hox expression is compatible with known Hox expression data from other molluscan lineages and may represent a key characteristic of molluscan Hox expression. These results support the concept of widespread staggered Hox expression in Mollusca and reveal aspects that may be related to the evolutionary diversification of molluscs. We propose that dorsoventral decoupling of Hox expression allowed lineage-specific dorsal and ventral patterning, which may have facilitated the evolution of diverse body plans in different molluscan lineages.


Sign in / Sign up

Export Citation Format

Share Document