scholarly journals Acute Ethanol Administration Rapidly Increases Phosphorylation of Conventional Protein Kinase C in Specific Mammalian Brain Regions in Vivo

2007 ◽  
Vol 31 (7) ◽  
pp. 1259-1267 ◽  
Author(s):  
Mary Beth Wilkie ◽  
Joyce Besheer ◽  
Stephen P. Kelley ◽  
Sandeep Kumar ◽  
Todd K. O'Buckley ◽  
...  
1990 ◽  
Vol 122 (3) ◽  
pp. 403-408
Author(s):  
Ph. Touraine ◽  
P. Birman ◽  
F. Bai-Grenier ◽  
C. Dubray ◽  
F. Peillon ◽  
...  

Abstract In order to investigate whether a calcium channel blocker could modulate the protein kinase C activity in normal and estradiol pretreated rat pituitary, female Wistar rats were treated or not (controls) with ± PN 200-110 (3 mg · kg−1 · day−1, sc) for 8 days or with estradiol cervical implants for 8 or 15 days, alone or in combination with PN 200-110 the last 8 days. Estradiol treatment induced a significant increase in plasma prolactin levels and pituitary weight. PN 200-110 administered to normal rats did not modify these parameters, whereas it reduced the effects of the 15 days estradiol treatment on prolactin levels (53.1 ± 4.9 vs 95.0 ±9.1 μg/l, p<0.0001) and pituitary weight (19.9 ± 0.4 vs 23.0 ± 0.6 mg, p <0.001), to values statistically comparable to those measured after 8 days of estradiol treatment. PN 200-110 alone did not induce any change in protein kinase C activity as compared with controls. In contrast, PN 200-110 treatment significantly counteracted the large increase in soluble activity and the decrease in the particulate one induced by estradiol between day 8 and day 15. We conclude that PN 200-110 opposed the stimulatory effects of chronic in vivo estradiol treatment on plasma prolactin levels and pituitary weight and that this regulation was related to a concomitant modulation of the protein kinase C activity.


2004 ◽  
Vol 89 (5) ◽  
pp. 1119-1125 ◽  
Author(s):  
Orit Bar-Am ◽  
Merav Yogev-Falach ◽  
Tamar Amit ◽  
Yotam Sagi ◽  
Moussa B. H. Youdim

1993 ◽  
Vol 290 (3) ◽  
pp. 633-636 ◽  
Author(s):  
H Banfić ◽  
M Žižak ◽  
N Divecha ◽  
R F Irvine

Highly purified nuclei were prepared from livers and kidneys of rats undergoing compensatory hepatic or renal growth, the former being predominantly by cellular proliferation, and the latter mostly by cellular enlargement. In liver, an increase in nuclear diacylglycerol (DAG) concentration occurred between 16 and 30 h, peaking at around 20 h. At the peak of nuclear DAG production a specific translocation of protein kinase C to the nucleus could be detected; no such changes occurred in kidney. There was no detectable change in whole-cell DAG levels in liver, and the increase in DAG was only measurable in nuclei freed of their nuclear membrane. Overall, these results suggest that there is a stimulation of intranuclear DAG production, possibly through the activation of an inositide cycle [Divecha, Banfić and Irvine (1991) EMBO J. 10, 3207-3214] during cell proliferation in vivo.


2000 ◽  
Vol 151 (4) ◽  
pp. 763-778 ◽  
Author(s):  
Mark R. Frey ◽  
Jennifer A. Clark ◽  
Olga Leontieva ◽  
Joshua M. Uronis ◽  
Adrian R. Black ◽  
...  

Members of the protein kinase C (PKC) family of signal transduction molecules have been widely implicated in regulation of cell growth and differentiation, although the underlying molecular mechanisms involved remain poorly defined. Using combined in vitro and in vivo intestinal epithelial model systems, we demonstrate that PKC signaling can trigger a coordinated program of molecular events leading to cell cycle withdrawal into G0. PKC activation in the IEC-18 intestinal crypt cell line resulted in rapid downregulation of D-type cyclins and differential induction of p21waf1/cip1 and p27kip1, thus targeting all of the major G1/S cyclin-dependent kinase complexes. These events were associated with coordinated alterations in expression and phosphorylation of the pocket proteins p107, pRb, and p130 that drive cells to exit the cell cycle into G0 as indicated by concomitant downregulation of the DNA licensing factor cdc6. Manipulation of PKC isozyme levels in IEC-18 cells demonstrated that PKCα alone can trigger hallmark events of cell cycle withdrawal in intestinal epithelial cells. Notably, analysis of the developmental control of cell cycle regulatory molecules along the crypt–villus axis revealed that PKCα activation is appropriately positioned within intestinal crypts to trigger this program of cell cycle exit–specific events in situ. Together, these data point to PKCα as a key regulator of cell cycle withdrawal in the intestinal epithelium.


Sign in / Sign up

Export Citation Format

Share Document