Long Term Frozen Storage of Human Red Blood Cells: Studiesin Vivoandin Vitroof Autologous Red Blood Cells Preserved up to Six Years with High Concentrations of Glycerol

Transfusion ◽  
1969 ◽  
Vol 9 (1) ◽  
pp. 5-14 ◽  
Author(s):  
C. R. Valeri ◽  
A. H. runck
2017 ◽  
Vol 61 (No. 8) ◽  
pp. 443-448 ◽  
Author(s):  
DA Bala ◽  
E. Eraslan ◽  
I. Akyazi ◽  
EE Ekiz ◽  
M. Ozcan ◽  
...  

Studies on the frozen storage of human blood products have benefited veterinary transfusion medicine in recent years, but the long-term cryopreservation of canine red blood cells (RBCs) has not yet been thoroughly investigated. Further, no studies are available with respect to the frozen storage of leukocyte-depleted canine red blood cells (LD-RBCs). The objective of the current study was to investigate time-dependent effects of long-term frozen storage on leukocyte-depleted canine RBCs. Twelve healthy adult dogs meeting the criteria for blood transfusion were used in the study. Whole blood samples (450 ± 45 ml) collected from each dog were centrifuged for 5 min at 22 °C and 4200 × g in a cryogenic microcentrifuge and concentrated RBC (pRBC) suspensions were obtained. Leukocyte depletion was achieved by filtration (2.6 log<sub>10</sub>). Then, the filtrated samples were prewashed three times in 0.9% NaCl solution and were allocated into three subgroups to be evaluated at three different time points (Day 0, Month 4 and Month 6). The samples for cryopreservation were subjected to glycerolisation and then stored at –80 °C for 4- and 6-month periods. At the end of this period pRBC units were thawed by manual agitation in a water bath maintained at 36–38 °C, centrifuged and then washed in a consecutive series of 12%, 1.6% and 0.9% of NaCl + 0.2 dextrose solutions. 2,3-Diphosphoglycerate (2,3-DPG), adenosine triphosphate (ATP), supernatant haemoglobin (SupHb), sodium (Na<sup>+</sup>) and potassium (K<sup>+</sup>) levels, residual glycerol concentrations and haemograms of thawed and deglycerolised pRBC samples were evaluated together with those of Day 0. Sterility tests were performed on all samples for bacterial contamination. No statistically significant differences were noted except for Hct and SupHb levels. No bacterial contamination was noted in any of the samples on the basis of sterility tests. It was found that the described glycerolisation procedure could be a method of choice in the cryopreservation of leukocyte-depleted pRBCs (LD-pRBCs) since no negative effect was observed on the quality of the products and long-term frozen storage did not cause RBC destruction.


1995 ◽  
Vol 306 (3) ◽  
pp. 793-799 ◽  
Author(s):  
H Fyrst ◽  
J Knudsen ◽  
M A Schott ◽  
B H Lubin ◽  
F A Kuypers

Acyl-CoA-binding protein (ACBP) has been identified in a number of tissues and shown to affect the intracellular distribution and utilization of acyl-CoA. We have detected ACBP in the cytosol but not the membrane of human red blood cells and, using an e.l.i.s.a. with antibodies prepared against human liver ACBP, found that its concentration was 0.5 microM. To investigate the role of ACBP in human red blood cells, we added purified human liver ACBP and radiolabelled acyl-CoA to isolated membranes from these cells. ACBP prevented high concentrations of acyl-CoA from binding to the membrane but could not keep the acyl-CoA in the aqueous phase at low concentrations. This suggested the presence of a pool in the membrane with a binding affinity for acyl-CoA that was greater than that of ACBP for acyl-CoA. In the presence of lysophospholipid, this membrane-bound pool of acyl-CoA was rapidly used as a substrate by acyl-CoA:lysophospholipid acyltransferase (LAT) to generate phospholipid from lysophospholipid. We also found that ACBP-bound acyl-CoA was preferred over free acyl-CoA as a substrate by LAT. These results are the first documentation that human red blood cells contain ACBP and that this protein can affect the utilization of acyl-CoA in plasma membranes of these cells. The interactions between acyl-CoA, ACBP and the membrane suggest that there are several pools of acyl-CoA in the human red blood cell and that ACBP may have a role in regulating their distribution and fate.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3675
Author(s):  
Bożena Bukowska

Tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCPP) are the main representatives of organophosphate flame retardants (OPFRs). The exposure of humans to OPFRs present in air, water, and food leads to their occurrence in the circulation. Thus far, no report has been published about the influence of these retardants on non-nucleated cells like mature erythrocytes. Therefore, the impact of TCEP and TCPP (in concentrations determined in human blood as well as potentially present in the human body after intoxication) on human erythrocytes was evaluated. In this study, the effect of TCEP and TCPP on the levels of methemoglobin, reduced glutathione (GHS), and reactive oxygen species (ROS), as well as the activity of antioxidative enzymes, was assessed. Moreover, morphological, hemolytic, and apoptotic alterations in red blood cells were examined. Erythrocytes were incubated for 24 h with retardants in concentrations ranging from 0.001 to 1000 μg/mL. This study has revealed that the tested flame retardants only in very high concentrations disturbed redox balance; increased ROS and methemoglobin levels; and induced morphological changes, hemolysis, and eryptosis in the studied cells. The tested compounds have not changed the activity of the antioxidative system in erythrocytes. TCPP exhibited a stronger oxidative, eryptotic, and hemolytic potential than TCEP in human red blood cells. Comparison of these findings with hitherto published data confirms a much lower toxicity of OPFRs in comparison with brominated flame retardants.


1984 ◽  
Vol 246 (5) ◽  
pp. C385-C390 ◽  
Author(s):  
P. K. Lauf ◽  
N. C. Adragna ◽  
R. P. Garay

Twenty to fifty percent of the ouabain-insensitive Na+ and K+ fluxes in human red blood cells are mediated by Cl(-) -dependent coupled transport (cotransport). In this paper we report on the effect of the sulfhydryl group reagent N-ethylmaleimide (NEM) on Cl(-) -dependent ouabain-insensitive Na+ and K+ fluxes in human red blood cells. We found that NEM altered Na+ -K+ cotransport and activated a latent Cl(-) -dependent K+ transport mode normally apparently silent. This conclusion was based on the following observations. 1) At low concentrations (0.25 mM) NEM abolished the bumetanide-sensitive Na+ efflux and had no effect, even at a 10-fold higher concentration, on the bumetanide-sensitive K+ efflux. 2) At concentrations above 0.1 mM, NEM stimulated Cl(-) -dependent K+ efflux that was only partially inhibited by high concentrations of bumetanide or furosemide. In experiments using Rb+ as a K+ analogue, NEM activated Rb+ influx by stimulating the maximum velocity and lowering the apparent external cation affinity. The data suggest the presence of chemically reactive groups in human red blood cells for both Cl(-) -dependent K+ transport activated by NEM and Cl(-) -dependent coupled Na+-K+ movements.


Author(s):  
A J P F Lombarts ◽  
B Leijnse

Sterile, fresh concentrates of human red blood cells suspended in a specially designed sterile preservation medium have a stability of all six red blood cell parameters of over four months as measured in the Coulter Model S-Plus II. Substitution under sterile conditions of the unstable white blood cells for (commercially available) fixed (human) red blood cells is a well-established method to obtain simulated white blood cell suspensions of long-term stability.


Sign in / Sign up

Export Citation Format

Share Document