Preharvest hematopoietic progenitor cell counts predict CD34+ cell yields in granulocyte-colony-stimulating factor-mobilized peripheral blood stem cell harvest in healthy donors

Transfusion ◽  
2009 ◽  
Vol 50 (5) ◽  
pp. 1088-1095 ◽  
Author(s):  
Shang-Hsien Yang ◽  
Tso-Fu Wang ◽  
His-Hsiu Tsai ◽  
Teng-Yi Lin ◽  
Shu-Hui Wen ◽  
...  
2000 ◽  
Vol 18 (9) ◽  
pp. 1824-1830 ◽  
Author(s):  
Omer N. Koç ◽  
Stanton L. Gerson ◽  
Brenda W. Cooper ◽  
Mary Laughlin ◽  
Howard Meyerson ◽  
...  

PURPOSE: Patient response to hematopoietic progenitor-cell mobilizing regimens seems to vary considerably, making comparison between regimens difficult. To eliminate this inter-patient variability, we designed a cross-over trial and prospectively compared the number of progenitors mobilized into blood after granulocyte-macrophage colony-stimulating factor (GM-CSF) days 1 to 12 plus granulocyte colony-stimulating factor (G-CSF) days 7 to 12 (regimen G) with the number of progenitors after cyclophosphamide plus G-CSF days 3 to 14 (regimen C) in the same patient. PATIENTS AND METHODS: Twenty-nine patients were randomized to receive either regimen G or C first (G1 and C1, respectively) and underwent two leukaphereses. After a washout period, patients were then crossed over to the alternate regimen (C2 and G2, respectively) and underwent two additional leukaphereses. The hematopoietic progenitor-cell content of each collection was determined. In addition, toxicity and charges were tracked. RESULTS: Regimen C (n = 50) resulted in mobilization of more CD34+ cells (2.7-fold/kg/apheresis), erythroid burst-forming units (1.8-fold/kg/apheresis), and colony-forming units–granulocyte-macrophage (2.2-fold/kg/apheresis) compared with regimen G given to the same patients (n = 46; paired t test, P < .01 for all comparisons). Compared with regimen G, regimen C resulted in better mobilization, whether it was given first (P = .025) or second (P = .02). The ability to achieve a target collection of ≥ 2 × 106 CD34+ cells/kg using two leukaphereses was 50% after G1 and 90% after C1. Three of the seven patients in whom mobilization was poor after G1 had ≥ 2 × 106 CD34+ cells/kg with two leukaphereses after C2. In contrast, when regimen G was given second (G2), seven out of 10 patients failed to achieve the target CD34+ cell dose despite adequate collections after C1. Thirty percent of the patients (nine of 29) given regimen C were admitted to the hospital because of neutropenic fever for a median duration of 4 days (range, 2 to 10 days). The higher cost of regimen C was balanced by higher CD34+ cell yield, resulting in equivalent charges based on cost per CD34+ cell collected. CONCLUSION: We report the first clinical trial that used a cross-over design showing that high-dose cyclophosphamide plus G-CSF results in mobilization of more progenitors then GM-CSF plus G-CSF when tested in the same patient regardless of sequence of administration, although the regimen is associated with greater morbidity. Patients who fail to achieve adequate mobilization after regimen G can be treated with regimen C as an effective salvage regimen, whereas patients who fail regimen C are unlikely to benefit from subsequent treatment with regimen G. The cross-over design allowed detection of significant differences between regimens in a small cohort of patients and should be considered in design of future comparisons of mobilization regimens.


2007 ◽  
Vol 48 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Rémi Letestu ◽  
Christophe Marzac ◽  
Françoise Audat ◽  
Ramdane Belhocine ◽  
Sylvie Tondeur ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2037-2037
Author(s):  
Sun-Young Kong ◽  
Hyoeun Shim ◽  
Se-Na Lee ◽  
Jung-Hee Kong ◽  
Hyeon-Seok Eom ◽  
...  

Abstract Background The optimal peripheral blood stem cell (PBSC) collection is a key step for successful outcome in hematopoietic stem cell transplantation (HSCT). Many indicators including preharvest white blood cell (WBC), mononuclear cell (MNC), and CD34 positive cell counts have been used for deciding the adequate time for collection of PBSCs, but each indicator has limitations. Here we investigated hematopoietic progenitor cell (HPC) count as an indicator for PBSC collection. Methods: Data from 851 autologous PBSC collections from 233 patients at the National Cancer Center, Korea, were analyzed. The correlations between harvested CD34 cell counts with preharvest WBC, MNC, CD34 cell counts, and HPC were analyzed, as were correlations by disease and mobilizing agent. Also how the outcome for engraftment can be predicted based on HPC count was studied. Results: The median age of patients was 41 years (range 0.1-72 years). The most frequent diseases were multiple myeloma (n=64) and non-Hodgkin lymphoma (n=56). The correlation coefficient between collected CD34 cells and preharvest CD34 count was (r=0.669, p<0.001), followed by preharvest HPC count (r=0.419, p<0.001), preharvest MNC (r=0.190, p<0.001) and preharvest WBC (r=0.014, p=0.679). The most adequate cut-off value for obtaining >1x106 CD34+ cells/kg at first time of PBSC was 24.0 HPCs/μL with sensitivity and specificity of 67.7% and 74.3% respectively. The cutoff as 28.0 HPCs/μL was adequate for obtaining 2.0 x106 CD34+ cells/kg with sensitivity and specificity of 73.7% and 72.2% respectively. HPC was well correlated with CD34 in PBSC of patients with multiple myeloma (r=0.326, p=0.009), non-Hodgkin lymphoma (r=0.353, p=0.008), especially diffuse large B-cell lymphoma (r=0.810, p<0.001) and acute leukemia (r=0.998, p<0.001). HPC was a better indicator for non-cyclophosphamide (r=0.337, p<0.001) than cyclophosphamide-based chemomobilization (r=0.572, p=0.052). Infused number of HPCs did not affect the times to engraftment of platelets (p=0.896) and neutrophils (p=0.953), though CD34 count of infusion had positive effect on platelet engraftment (p=0.017). Conclusion: HPC count represented good correlation with CD34+ and high area under the curve. Considering advantages of ease for use and cost-effectiveness than those of CD34 count, HPC is a good surrogate marker to determine appropriate timing for PBSC. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1988 ◽  
Vol 72 (6) ◽  
pp. 2074-2081 ◽  
Author(s):  
U Duhrsen ◽  
JL Villeval ◽  
J Boyd ◽  
G Kannourakis ◽  
G Morstyn ◽  
...  

Hematopoietic progenitor cell levels were monitored in the peripheral blood and bone marrow of 30 cancer patients receiving recombinant human granulocyte-colony stimulating-factor (rG-CSF) in a phase I/II clinical trial. The absolute number of circulating progenitor cells of granulocyte-macrophage, erythroid, and megakaryocyte lineages showed a dose-related increase up to 100-fold after four days of treatment with rG-CSF and often remained elevated two days after the cessation of therapy. The relative frequency of different types of progenitor cells in peripheral blood remained unchanged. The frequency of progenitor cells in the marrow was variable after rG-CSF treatment but in most patients was slightly decreased. The responsiveness of bone marrow progenitor cells to stimulation in vitro by rG-CSF and granulocyte- macrophage colony-stimulating factor did not change significantly during rG-CSF treatment. In patients nine days after treatment with melphalan and then rG-CSF, progenitor cell levels were very low with doses of rG-CSF at or below 10 micrograms/kg/d, but equaled or exceeded pretreatment values when 30 or 60 micrograms/kg/d of rG-CSF was given.


Sign in / Sign up

Export Citation Format

Share Document