Fabrication of Three-Dimensional Micro Photonic Crystals of Resin-Incorporating TiO2Particles and their Terahertz Wave Properties

2007 ◽  
Vol 90 (1) ◽  
pp. 92-96 ◽  
Author(s):  
Weiwu Chen ◽  
Soshu Kirihara ◽  
Yoshinari Miyamoto
2009 ◽  
Vol 631-632 ◽  
pp. 299-304 ◽  
Author(s):  
Soshu Kirihara ◽  
Toshiki Niki ◽  
Masaru Kaneko

Fabrication and terahertz wave properties of alumina micro photonic crystals with a diamond structure were investigated. The three-dimensional diamond structure was designed on a computer using 3D-CAD software. Acrylic diamond structures with alumina particles dispersion were formed by using micro-stereolithography. Fabricated precursors were dewaxed and sintered in the air. The electromagnetic wave properties were measured by terahertz time-domain spectroscopy. A complete photonic band gap was observed at the frequency range from 0.40 to 0.47 THz, and showed good agreement with the simulation results calculated by the plane wave expansion method. Moreover, a localized mode was obtained by introducing a plane defect between twinned diamond structures. The one-way transmission of the electromagnetic wave was realized by using this twinned photonic crystal with the graded diamond structure. They corresponded to the simulation by the transmission line modeling (TLM) method.


2008 ◽  
Vol 23 (4) ◽  
pp. 1036-1041 ◽  
Author(s):  
Hideaki Kanaoka ◽  
Soshu Kirihara ◽  
Yoshinari Miyamoto

Fabrication and terahertz wave properties of alumina microphotonic crystals with a diamond structure were investigated. The three-dimensional diamond structure was designed on a computer using 3D-CAD software. The designed lattice constant was 500 μm. The structure consisted of 8 × 8 × 4 unit cells. Acrylic diamond structures with an alumina dispersion of 40 vol% were formed by using microstereolithography. Fabricated precursors were dewaxed at 600 °C and sintered at 1500 °C. The linear shrinkage ratio was about 25%. The relative density reached 97.5%. The electromagnetic wave properties were measured by terahertz time-domain spectroscopy. A complete photonic band gap was observed at the frequency range from 0.40 THz to 0.47 THz, and showed good agreement with the simulation results calculated by the plane wave expansion method. Moreover, localized modes were obtained at the frequencies 0.42 THz and 0.46 THz by introducing an air defect in the diamond structure. They corresponded to the simulation by the transmission line modeling method.


2008 ◽  
Vol 103 (10) ◽  
pp. 103106 ◽  
Author(s):  
Yoshinari Miyamoto ◽  
Hideaki Kanaoka ◽  
Soshu Kirihara

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Soshu Kirihara ◽  
Noritoshi Ohta ◽  
Toshiki Niki ◽  
Satoko Tasaki

Terahertz wave resonators composed of three-dimensional photonic crystals composed of alumina lattices with diamond structures were designed and fabricated by using microstereolithography process. These three dimensional periodic structures of ceramics can reflect perfectly the terahertz waves through Bragg diffraction. A micro glass cell including water solvents was put between two photonic crystals to realize multiple resonations of terahertz waves to synchronize with various vibration modes of saccharide or protein molecules and control biochemical reactions through electromagnetic excitations.


Author(s):  
Ted Janssen ◽  
Gervais Chapuis ◽  
Marc de Boissieu

The law of rational indices to describe crystal faces was one of the most fundamental law of crystallography and is strongly linked to the three-dimensional periodicity of solids. This chapter describes how this fundamental law has to be revised and generalized in order to include the structures of aperiodic crystals. The generalization consists in using for each face a number of integers, with the number corresponding to the rank of the structure, that is, the number of integer indices necessary to characterize each of the diffracted intensities generated by the aperiodic system. A series of examples including incommensurate multiferroics, icosahedral crystals, and decagonal quaiscrystals illustrates this topic. Aperiodicity is also encountered in surfaces where the same generalization can be applied. The chapter discusses aperiodic crystal morphology, including icosahedral quasicrystal morphology, decagonal quasicrystal morphology, and aperiodic crystal surfaces; magnetic quasiperiodic systems; aperiodic photonic crystals; mesoscopic quasicrystals, and the mineral calaverite.


Sign in / Sign up

Export Citation Format

Share Document