scholarly journals Role of Toll-like receptor 4 in innate immune responses in a mouse model of acute otitis media

2007 ◽  
Vol 49 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Takashi Hirano ◽  
Satoru Kodama ◽  
Keigo Fujita ◽  
Kazuhiko Maeda ◽  
Masashi Suzuki
2002 ◽  
Vol 168 (2) ◽  
pp. 810-815 ◽  
Author(s):  
Xiaorong Wang ◽  
Christian Moser ◽  
Jean-Pierre Louboutin ◽  
Elena S. Lysenko ◽  
Daniel J. Weiner ◽  
...  

2010 ◽  
Vol 138 (5) ◽  
pp. S-36
Author(s):  
Yvonne Junker ◽  
Donatella Barisani ◽  
Daniel A. Leffler ◽  
Towia Libermann ◽  
Simon T. Dillon ◽  
...  

2020 ◽  
Author(s):  
Richa Mishra ◽  
Sanjana Bhattacharya ◽  
Bhupendra S Rawat ◽  
Ashish Kumar ◽  
Akhilesh Kumar ◽  
...  

AbstractPrecise regulation of innate immunity is crucial for the development of appropriate host immunity against microbial infections and the maintenance of immune homeostasis. The microRNAs are small non-coding RNA, post-transcriptional regulator of multiple genes and act as a rheostat for protein expression. Here, we identified microRNA(miR)-30e-5p (miR-30e) induced by the hepatitis B virus (HBV) and other viruses that act as a master regulator for innate immune responses. Moreover, pegylated type I interferons treatment to HBV patients for viral reduction also reduces the miRNA. Additionally, we have also shown the immuno-pathological effects of miR-30e in systemic lupus erythematous (SLE) patients and SLE mouse model. Mechanistically, the miR-30e targets multiple negative regulators namely TRIM38, TANK, ATG5, ATG12, BECN1, SOCS1, SOCS3 of innate immune signaling pathways and enhances innate immune responses. Furthermore, sequestering of endogenous miR-30e in PBMCs of SLE patients and SLE mouse model respectively by the introduction of antagomir and locked nucleic acid based inhibitor significantly reduces type I interferon and pro-inflammatory cytokines. Collectively, our study demonstrates the novel role of miR-30e in innate immunity and its prognostic and therapeutic potential in infectious and autoimmune diseases.


2021 ◽  
Author(s):  
Steven G. Negron ◽  
Chase W. Kessinger ◽  
Bing Xu ◽  
William T. Pu ◽  
Zhiqiang Lin

Cardiac injury is common in hospitalized COVID-19 patients and portends poorer prognosis and higher mortality. To better understand how SARS-CoV-2 (CoV-2) damages the heart, it is critical to elucidate the biology of CoV-2 encoded proteins, each of which may play multiple pathological roles. For example, CoV-2 Spike glycoprotein (CoV-2-S) not only engages ACE2 to mediate virus infection, but also directly impairs endothelial function and can trigger innate immune responses in cultured murine macrophages. Here we tested the hypothesis that CoV-2-S damages the heart by activating cardiomyocyte (CM) innate immune responses. HCoV-NL63 is another human coronavirus with a Spike protein (NL63-S) that also engages ACE2 for virus entry but is known to only cause moderate respiratory symptoms. We found that CoV-2-S and not NL63-S interacted with Toll-like receptor 4 (TLR4), a crucial pattern recognition receptor that responsible for detecting pathogen and initiating innate immune responses. Our data show that the S1 subunit of CoV-2-S (CoV-2-S1) interacts with the extracellular leucine rich repeats-containing domain of TLR4 and activates NF-kB. To investigate the possible pathological role of CoV-2-S1 in the heart, we generated a construct that expresses membrane-localized CoV-2-S1 (S1-TM). AAV9-mediated, selective expression of the S1-TM in CMs caused heart dysfunction, induced hypertrophic remodeling, and elicited cardiac inflammation. Since CoV-2-S does not interact with murine ACE2, our study presents a novel ACE2-independent pathological role of CoV-2-S, and suggests that the circulating CoV-2-S1 is a TLR4-recognizable alarmin that may harm the CMs by triggering their innate immune responses.


Sign in / Sign up

Export Citation Format

Share Document