scholarly journals Relatedness between Streptococcus pneumoniae and viridans streptococci: transfer of penicillin resistance determinants and immunological similarities of penicillin-binding proteins

1991 ◽  
Vol 90 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Lynda Chalkley ◽  
Cordelia Schuster ◽  
Elsa Potgieter ◽  
Regine Hakenbeck
2005 ◽  
Vol 49 (4) ◽  
pp. 1591-1592 ◽  
Author(s):  
Krzysztof Trzciński ◽  
Adam MacNeil ◽  
Keith P. Klugman ◽  
Marc Lipsitch

ABSTRACT Penicillin resistance is mainly confined to a limited number of Streptococcus pneumoniae serotypes. Given linkage between the capsular biosynthesis locus and two penicillin binding proteins, we tested whether capsule homology increases transformation rates of penicillin resistance. Transformation rates in homologous donor-recipient pairs were no higher than expected, falsifying this hypothesis.


2013 ◽  
Vol 58 (3) ◽  
pp. 1397-1403 ◽  
Author(s):  
Fereshteh Fani ◽  
Philippe Leprohon ◽  
George G. Zhanel ◽  
Michel G. Bergeron ◽  
Marc Ouellette

ABSTRACTAlterations in penicillin-binding proteins, the target enzymes for β-lactam antibiotics, are recognized as primary penicillin resistance mechanisms inStreptococcus pneumoniae. Few studies have analyzed penicillin resistance at the genome scale, however, and we report the sequencing ofS. pneumoniaeR6 transformants generated while reconstructing the penicillin resistance phenotypes from three penicillin-resistant clinical isolates by serial genome transformation. The genome sequences of the three last-level transformants T2-18209, T5-1983, and T3-55938 revealed that 16.2 kb, 82.7kb, and 137.2 kb of their genomes had been replaced with 5, 20, and 37 recombinant sequence segments derived from their respective parental clinical isolates, documenting the extent of DNA transformation between strains. A role in penicillin resistance was confirmed for some of the mutations identified in the transformants. Several multiple recombination events were also found to have happened at single loci coding for penicillin-binding proteins (PBPs) that increase resistance. Sequencing of the transformants with MICs for penicillin similar to those of the parent clinical strains confirmed the importance of mosaic PBP2x, -2b, and -1a as a driving force in penicillin resistance. A role in resistance for mosaic PBP2a was also observed for two of the resistant clinical isolates.


2016 ◽  
Vol 1 (2) ◽  
pp. 22 ◽  
Author(s):  
Navindra Kumari Palanisamy ◽  
Parasakthi Navaratnam ◽  
Shamala Devi Sekaran

Introduction: Streptococcus pneumoniae is an important bacterial pathogen, causing respiratory infection. Penicillin resistance in S. pneumoniae is associated with alterations in the penicillin binding proteins, while resistance to macrolides is conferred either by the modification of the ribosomal target site or efflux mechanism. This study aimed to characterize S. pneumoniae and its antibiotic resistance genes using 2 sets of multiplex PCRs. Methods: A quintuplex and triplex PCR was used to characterize the pbp1A, ermB, gyrA, ply, and the mefE genes. Fifty-eight penicillin sensitive strains (PSSP), 36 penicillin intermediate strains (PISP) and 26 penicillin resistance strains (PRSP) were used. Results: Alteration in pbp1A was only observed in PISP and PRSP strains, while PCR amplification of the ermB or mefE was observed only in strains with reduced susceptibility to erythromycin. The assay was found to be sensitive as simulated blood cultures showed the lowest level of detection to be 10cfu. Conclusions: As predicted, the assay was able to differentiate penicillin susceptible from the non-susceptible strains based on the detection of the pbp1A gene, which correlated with the MIC value of the strains.


2007 ◽  
Vol 51 (9) ◽  
pp. 3404-3406 ◽  
Author(s):  
Cheng-Hsun Chiu ◽  
Lin-Hui Su ◽  
Yhu-Chering Huang ◽  
Jui-Chia Lai ◽  
Hsiu-Ling Chen ◽  
...  

ABSTRACT The rate of nonsusceptibility of penicillin-resistant Streptococcus pneumoniae strains to ceftriaxone increased significantly in Taiwan in 2005. Approximately 90% of the ceftriaxone-nonsusceptible isolates were found to be of four major serotypes (serotypes 6B, 14, 19F, and 23F). Seven amino acid alterations in the penicillin-binding protein 2B transpeptidase-encoding region specifically contributed to the resistance.


ORL ◽  
2006 ◽  
Vol 68 (3) ◽  
pp. 139-145 ◽  
Author(s):  
Muneki Hotomi ◽  
Dewan S. Billal ◽  
Jun Shimada ◽  
Masaki Suzumoto ◽  
Kazuma Yamauchi ◽  
...  

2007 ◽  
Vol 52 (3) ◽  
pp. 1021-1027 ◽  
Author(s):  
Radosław Izdebski ◽  
Jens Rutschmann ◽  
Janusz Fiett ◽  
Ewa Sadowy ◽  
Marek Gniadkowski ◽  
...  

ABSTRACT Penicillin-binding proteins (PBPs) in representatives of two Streptococcus pneumoniae clonal groups that are prevalent in Poland, Poland23F-16 and Poland6B-20, were investigated by PBP profile analysis, antibody reactivity pattern analysis, and DNA sequence analysis of the transpeptidase (TP) domain-encoding regions of the pbp2x, pbp2b, and pbp1a genes. The isolates differed in their MICs of β-lactam antibiotics. The majority of the 6B isolates were intermediately susceptible to penicillin (penicillin MICs, 0.12 to 0.5 μg/ml), whereas all 23F isolates were penicillin resistant (MICs, ≥2 μg/ml). The 6B isolates investigated had the same sequence type (ST), determined by multilocus sequence typing, as the Poland6B-20 reference strain (ST315), but in the 23F group, isolates with three distinct single-locus variants (SLVs) in the ddl gene (ST173, ST272, and ST1506) were included. None of the isolates showed an identical PBP profile after labeling with Bocillin FL and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and only one pair of 6B isolates and one pair of 23F isolates (ST173 and ST272) each contained an identical combination of PBP 2x, PBP 2b, and PBP 1a TP domains. Some 23F isolates contained PBP 3 with an apparently higher electrophoretic mobility, and this feature also did not correlate with their STs. The data document a highly variable pool of PBP genes as a result of multiple gene transfer and recombination events within and between different clonal groups.


Sign in / Sign up

Export Citation Format

Share Document