dna transformation
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 14)

H-INDEX

34
(FIVE YEARS 2)

2021 ◽  
Vol 9 (12) ◽  
pp. 2455
Author(s):  
María Castillo López ◽  
Beatriz Galán ◽  
Manuel Carmona ◽  
Juana María Navarro Navarro Llorens ◽  
Juli Peretó ◽  
...  

The highly xerotolerant bacterium classified as Exiguobacterium sp. Helios isolated from a solar panel in Spain showed a close relationship to Exiguobacterium sibiricum 255–15 isolated from Siberian permafrost. Xerotolerance has not been previously described as a characteristic of the extremely diverse Exiguobacterium genus, but both strains Helios and 255–15 showed higher xerotolerance than that described in the reference xerotolerant model strain Deinococcus radiodurans. Significant changes observed in the cell morphology after their desiccation suggests that the structure of cellular surface plays an important role in xerotolerance. Apart from its remarkable resistance to desiccation, Exiguobacterium sp. Helios strain shows several polyextremophilic characteristics that make it a promising chassis for biotechnological applications. Exiguobacterium sp. Helios cells produce nanoparticles of selenium in the presence of selenite linked to its resistance mechanism. Using the Lactobacillus plasmid pRCR12 that harbors a cherry marker, we have developed a transformation protocol for Exiguobacterium sp. Helios strain, being the first time that a bacterium of Exiguobacterium genus has been genetically modified. The comparison of Exiguobacterium sp. Helios and E. sibiricum 255–15 genomes revealed several interesting similarities and differences. Both strains contain a complete set of competence-related DNA transformation genes, suggesting that they might have natural competence, and an incomplete set of genes involved in sporulation; moreover, these strains not produce spores, suggesting that these genes might be involved in xerotolerance.


Author(s):  
Nacyra Assad-Garcia ◽  
Roshan D’Souza ◽  
Rachel Buzzeo ◽  
Arti Tripathi ◽  
Lauren M. Oldfield ◽  
...  

Staphylococcus aureus is an opportunistic pathogen causing a wide range of infections and food poisoning in humans with antibiotic resistance, specifically to methicillin, compounding the problem. Bacteriophages (phages) provide an alternative treatment strategy, but only infect a limited number of circulating strains and may quickly become ineffective due to bacterial resistance. To overcome these obstacles, engineered phages have been proposed, but methods are needed for efficient transformation of large DNA molecules into S. aureus to boot-up (i.e., rescue) infectious phages. We present a new, efficient and reproducible DNA transformation method, NEST (Non-Electroporation Staphylococcus Transformation), for S. aureus to boot-up of purified phage genomic DNA (at least 150 kb in length tested) and whole yeast-assembled synthetic phage genomes. This method is a powerful new tool for transformation of DNA in S. aureus and will enable the rapid development of engineered therapeutic phages and phage cocktails against Gram-positive pathogens. Importance The continued emergence of antibiotic resistant bacterial pathogens has heightened the urgency for alternative antibacterial strategies. Phages provide an alternative treatment strategy, but are difficult to optimize. Synthetic biology approaches have been successfully used to construct and rescue genomes of model phages, but only in a limited number of highly transformable host species. In this study, we used a new, reproducible, and efficient transformation method to reconstitute a functional non-model Siphophage from a constructed synthetic genome. This method will facilitate not only the engineering of Staphylococcus and Enterococcus phages for therapeutic applications but also the engineering of Staphylococcus strains by enabling transformation of higher molecular weight DNA to introduce more complex modifications.


2021 ◽  
Author(s):  
Shiran Suban ◽  
Rakefet Schwarz ◽  
Eleonora Sendersky ◽  
Susan S. Golden

A biofilm inhibiting mechanism operates in the cyanobacterium Synechococcus elongatus. Here, we demonstrate that the glycosyltransferase homolog, Ogt, participates in the inhibitory process. inactivation of ogt results in robust biofilm formation. Furthermore, a mutational approach shows requirement of the glycosyltransferase activity for biofilm inhibition. This enzyme is necessary for glycosylation of the pilus subunit and for adequate pilus formation. In contrast to wild type culture in which most cells exhibit several pili, only 25% of the mutant cells are piliated, half of which possess a single pilus. In spite of this poor piliation, natural DNA competence was similar to that of wild type, therefore, we propose that the unglycosylated pili facilitate DNA transformation. Additionally, conditioned medium from wild-type culture, which contains a biofilm inhibiting substance(s), only partially blocks biofilm development by the ogt mutant. Thus, we suggest that inactivation of ogt affects multiple processes including production or secretion of the inhibitor as well as the ability to sense or respond to it.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 327
Author(s):  
Kristin Köppen ◽  
Grisna I. Prensa ◽  
Kerstin Rydzewski ◽  
Hana Tlapák ◽  
Gudrun Holland ◽  
...  

Here we present the characterization of a Francisella bacteriophage (vB_FhiM_KIRK) including the morphology, the genome sequence and the induction of the prophage. The prophage sequence (FhaGI-1) has previously been identified in F. hispaniensis strain 3523. UV radiation induced the prophage to assemble phage particles consisting of an icosahedral head (~52 nm in diameter), a tail of up to 97 nm in length and a mean width of 9 nm. The double stranded genome of vB_FhiM_KIRK contains 51 open reading frames and is 34,259 bp in length. The genotypic and phylogenetic analysis indicated that this phage seems to belong to the Myoviridae family of bacteriophages. Under the conditions tested here, host cell (Francisella hispaniensis 3523) lysis activity of KIRK was very low, and the phage particles seem to be defective for infecting new bacterial cells. Nevertheless, recombinant KIRK DNA was able to integrate site-specifically into the genome of different Francisella species after DNA transformation.


2021 ◽  
Vol 7 (1) ◽  
pp. 56
Author(s):  
Ping Wang

Genetic transformation plays an imperative role in our understanding of the biology in unicellular yeasts and filamentous fungi, such as Saccharomyces cerevisiae, Aspergillus nidulans, Cryphonectria parasitica, and Magnaporthe oryzae. It also helps to understand the virulence and drug resistance mechanisms of the pathogenic fungus Cryptococcus that causes cryptococcosis in health and immunocompromised individuals. Since the first attempt at DNA transformation in this fungus by Edman in 1992, various methods and techniques have been developed to introduce DNA into this organism and improve the efficiency of homology-mediated gene disruption. There have been many excellent summaries or reviews covering the subject. Here we highlight some of the significant achievements and additional refinements in the genetic transformation of Cryptococcus species.


2021 ◽  
Vol 22 (2) ◽  
pp. 480
Author(s):  
Jongrae Kim ◽  
Kwang Suk Chang ◽  
Sangmuk Lee ◽  
EonSeon Jin

To date, Chlorella vulgaris is the most used species of microalgae in the food and feed additive industries, and also considered as a feasible cell factory for bioproducts. However, the lack of an efficient genetic engineering tool makes it difficult to improve the physiological characteristics of this species. Therefore, the development of new strategic approaches such as genome editing is trying to overcome this hurdle in many research groups. In this study, the possibility of editing the genome of C. vulgaris UTEX395 using clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) has been proven to target nitrate reductase (NR) and adenine phosphoribosyltransferase (APT). Genome-edited mutants, nr and apt, were generated by a DNA-mediated and/or ribonucleoprotein (RNP)-mediated CRISPR-Cas9 system, and isolated based on the negative selection against potassium chlorate or 2-fluoroadenine in place of antibiotics. The null mutation of edited genes was demonstrated by the expression level of the correspondent proteins or the mutation of transcripts, and through growth analysis under specific nutrient conditions. In conclusion, this study offers relevant empirical evidence of the possibility of genome editing in C. vulgaris UTEX395 by CRISPR-Cas9 and the practical methods. Additionally, among the generated mutants, nr can provide an easier screening strategy during DNA transformation than the use of antibiotics owing to their auxotrophic characteristics. These results will be a cornerstone for further advancement of the genetics of C. vulgaris.


Author(s):  
O.B. Naimark ◽  
Yu.V. Bayandin ◽  
Yu.A. Beloglazova ◽  
O.N. Gagarskich ◽  
V.V. Grishko ◽  
...  

Statistical thermodynamics allowed the formulation of mesoscopic approach of DNA transformation in course of the excitation of collective distortion modes (denaturation bubbles) associated with hydrogen bond breaking between the base pairs. Intermediate (non-continual limit) of DNA modeling (the Peyrard-Bishop model) is combined with the field description (generalized Ginzburg-Landau approach) to analyze the dynamics of collective open complex modes associated with mesodefects in the DNA ensemble. Collective modes dynamics describes different scenario of gene expression according to statistically predicted form of out-of-equilibrium potential (epigenetic landscape) reflecting specific type criticality of “soft matter” with mesodefects (open complexes) – the structural-scaling transition. Principal difference of thermodynamics of non-continual and continual models is thermalization conditions related to thermal fluctuations responsible for the DNA breathing (localized excitation with breather dynamics) and structural-scaling parameter responsible for spinodal decomposition of out-of-equilibrium potential metastability due to generation of open complex collective modes. Open complex collective modes have the nature of self-similar solutions (breathers, auto-solitary and blow-up modes) of open complex evolution equation accounting qualitative different types of potential metastabilities. Sub-sets of collective modes represent the phase variables of attractors associated with different scenario of expression dynamics, which allows the interpretation of multistability of the epigenetic landscape and the Huang diagram of gene expression. It was shown different epigenetic pathway in attractors phase space corresponding to normal and cancer expression scenario. These scenarios were supported by laser interference microscopy of living normal and cancer cells illustrating multi- and monofractal dynamics.


2019 ◽  
Vol 103 (23-24) ◽  
pp. 9205-9215
Author(s):  
Jun Ren ◽  
Sandeep Karna ◽  
Hyang-Mi Lee ◽  
Seung Min Yoo ◽  
Dokyun Na

Sign in / Sign up

Export Citation Format

Share Document