scholarly journals Halogenated furanones from the red alga,Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogenErwinia carotovora

2001 ◽  
Vol 205 (1) ◽  
pp. 131-138 ◽  
Author(s):  
Michael Manefield ◽  
Martin Welch ◽  
Michael Givskov ◽  
George P.C. Salmond ◽  
Staffan Kjelleberg
2012 ◽  
Vol 194 (19) ◽  
pp. 5274-5284 ◽  
Author(s):  
Y. Sun ◽  
B. J. Wilkinson ◽  
T. J. Standiford ◽  
H. T. Akinbi ◽  
M. X. D. O'Riordan

Microbiology ◽  
2014 ◽  
Vol 160 (6) ◽  
pp. 1054-1062 ◽  
Author(s):  
Amit Vikram ◽  
Vanessa M. Ante ◽  
X. Renee Bina ◽  
Qin Zhu ◽  
Xinyu Liu ◽  
...  

Vibrio cholerae has been shown to produce a cyclic dipeptide, cyclo(phenylalanine–proline) (cFP), that functions to repress virulence factor production. The objective of this study was to determine if heterologous cyclic dipeptides could repress V. cholerae virulence factor production. To that end, three synthetic cyclic dipeptides that differed in their side chains from cFP were assayed for virulence inhibitory activity in V. cholerae. The results revealed that cyclo(valine–valine) (cVV) inhibited virulence factor production by a ToxR-dependent process that resulted in the repression of the virulence regulator aphA. cVV-dependent repression of aphA was found to be independent of known aphA regulatory genes. The results demonstrated that V. cholerae was able to respond to exogenous cyclic dipeptides and implicated the hydrophobic amino acid side chains on both arms of the cyclo dipeptide scaffold as structural requirements for inhibitory activity. The results further suggest that cyclic dipeptides have potential as therapeutics for cholera treatment.


2013 ◽  
Vol 59 (9) ◽  
pp. 598-603 ◽  
Author(s):  
Kathryn E. Oliver ◽  
Laura Silo-Suh

Chronic Pseudomonas aeruginosa infections remain the leading cause of lung dysfunction and mortality for cystic fibrosis (CF) patients. Many other bacteria inhabit the CF lung, but P. aeruginosa utilizes novel strategies that allow it to colonize this environment as the predominant bacterial pathogen. d-Amino acid dehydrogenase encoded by dadA is highly expressed by P. aeruginosa within the CF lung, and it is required for optimal production of hydrogen cyanide by some CF-adapted isolates. To better understand the increased significance of d-amino acid dehydrogenase in P. aeruginosa physiology, we characterized the contribution of the dad operon to virulence factor production. In this study, we determined that DadA is required for optimal production of pyocyanin, pyoverdine, and rhamnolipid by CF-adapted and non-CF-adapted isolates of P. aeruginosa. In addition, DadA is required for optimal production of alginate, biofilm formation, and virulence of a CF-adapted isolated of P. aeruginosa in an alfalfa seedling model of infection. Taken together, the results indicate that DadA plays a pleiotropic role in the production of important virulence factors by P. aeruginosa.


2018 ◽  
Vol 14 (1) ◽  
pp. e1006804 ◽  
Author(s):  
X. Renee Bina ◽  
Mondraya F. Howard ◽  
Dawn L. Taylor-Mulneix ◽  
Vanessa M. Ante ◽  
Dillon E. Kunkle ◽  
...  

2018 ◽  
Vol 61 (23) ◽  
pp. 10473-10487 ◽  
Author(s):  
Pushpak Mizar ◽  
Rekha Arya ◽  
Truc Kim ◽  
Soyoung Cha ◽  
Kyoung-Seok Ryu ◽  
...  

2019 ◽  
Vol 87 (3) ◽  
Author(s):  
Mondraya F. Howard ◽  
X. Renee Bina ◽  
James E. Bina

ABSTRACTIndole is a degradation product of tryptophan that functions as a signaling molecule in many bacteria. This includesVibrio cholerae, where indole was shown to regulate biofilm and type VI secretion in nontoxigenic environmental isolates. Indole is also produced by toxigenicV. choleraestrains in the human intestine, but its significance in the host is unknown. We investigated the effects of indole on toxigenicV. choleraeO1 El Tor during growth under virulence inducing conditions. The indole transcriptome was defined by RNA sequencing and showed widespread changes in the expression of genes involved in metabolism, biofilm production, and virulence factor production. In contrast, genes involved in type VI secretion were not affected by indole. We subsequently found that indole repressed genes involved inV. choleraepathogenesis, including the ToxR virulence regulon. Consistent with this, indole inhibited cholera toxin and toxin-coregulated pilus production in a dose-dependent manner. The effects of indole on virulence factor production and biofilm were linked to ToxR and the ToxR-dependent regulator LeuO. The expression ofleuOwas increased by exogenous indole and linked to repression of the ToxR virulence regulon. This process was dependent on the ToxR periplasmic domain, suggesting that indole was a ToxR agonist. This conclusion was further supported by results showing that the ToxR periplasmic domain contributed to indole-mediated increased biofilm production. Collectively, our results suggest that indole may be a niche-specific cue that can function as a ToxR agonist to modulate virulence gene expression and biofilm production inV. cholerae.


Sign in / Sign up

Export Citation Format

Share Document