scholarly journals Proteome analysis at the subcellular level of the cyanobacteriumSpirulina platensisin response to low-temperature stress conditions

2008 ◽  
Vol 288 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Apiradee Hongsthong ◽  
Matura Sirijuntarut ◽  
Peerada Prommeenate ◽  
Kanda Lertladaluck ◽  
Kriengkrai Porkaew ◽  
...  
2021 ◽  
Vol 12 (6) ◽  
pp. 706-712
Author(s):  
D. K. Yadav ◽  
◽  
Yogendra K. Meena ◽  
L. N. Bairwa ◽  
Uadal Singh ◽  
...  

Growth and productivity are traumatized by the low temperature that triggers a series of physiological, morphological, molecular and biochemical changes in plants that eventually disturb plant life. Most of the cultivable lands of the world are adversely affected by temperature stress conditions which have an adverse impact on global tomato productivity. Plants undergo several water related metabolic activities for their survival during cold stress conditions. Understanding the morphological, physiological and biochemical reactions to low temperature is essential for a comprehensive view of the perception of tomato plant tolerant mechanism. This review reports some aspects of low temperature inflated changes in physiological and biochemical in the tomato plant. Low temperature stress influences the reproductive phases of plants with delayed flowering which enhance pollen sterility resultant drastically affects the harvest yield. It also decreases the capacity and efficiency of photosynthesis through changes in gas exchange, pigment content, chloroplast development and decline in chlorophyll fluorescence photosynthetic attributes. Amassing of osmoprotectant is another adaptive mechanism in plants exposed to low temperatures stress, as essential metabolites directly participate in the osmotic adjustment. Furthermore, low temperature stress enhanced the production of reactive oxygen species (ROS) which may oxidize lipids, proteins and nucleic acids which bring in distortion at the level of the cell. At the point when extreme reactive oxygen species produced, plants synthesize antioxidant enzymes and osmoprotectants that quench the abundance of reactive oxygen species. These reviews focus on the capacity and techniques of the tomato plant to react low temperature stress.


2021 ◽  
Author(s):  
Yuanyuan Fu ◽  
Abdoul Kader Mounkaila Hamani ◽  
Wenjun Sun ◽  
Hongbo Wang ◽  
Abubakar Sunusi Amin ◽  
...  

Abstract Low temperature and soil salinization during cotton sowing and seedling have adverse effects on cotton productivity. Finding an alternative for reducing the low temperature and salt induced damages during the seedling stage of cotton is a challenge for agricultural researchers nowadays. The physiological mechanism of exogenously applied melatonin (MT) on cotton seedlings under low temperature and salt stress is still unclear. The experiment in a phytotron was comprised with two temperature levels of 15°C and 25°C, and 5 MT treatments of 0, 50, 100, 150, 200 µM, and two salinity levels of 0 and 150 mM NaCl stress. Compared with the control treatments (non-salinity stress under 15°C and 25°C), the coupled stress of salt and low temperature reduced cotton seedlings’ biomass and net photosynthetic rate (Pn), aggravated the membrane damage, reduced the potassium (K+) content and increased the sodium (Na+) accumulation in the leaves and roots. Compared with the NaCl-stressed treatment alone, the exogenous foliar applications of 50-150µM MT significantly increased the biomass and gas exchange parameters of cotton seedlings under the coupled salt and low temperature stress conditions. The exogenously applied MT at 50-150µM under the coupled effect of salt and low temperature stress conditions decreased the degree of membrane damage and regulated the activities of the protective enzymes, ion homeostasis, ion transport and absorption of cotton seedlings. The pairwise correlation analysis of each parameter by MT shows that the parameters with higher correlation with MT at 15°C are mainly malondialdehyde (MDA), peroxidase (POD), and catalase (CAT). The most relevant parameters at 25℃ are K+ concentration in leaves (K+-L), K+ concentration in root (K+-R), Na+ concentration in leaves (Na+-L), Na+ concentration in root (Na+-R), Na+ uptake in-root surface (Na+-uptake), K+ ion translocation (K+-translocation). Stepwise linear regression of the above parameters found that MT is more related to MDA at 15°C, and MT is more related to Na+-L at 25°C.


2019 ◽  
Vol 26 (2) ◽  
pp. 280
Author(s):  
Penglei JIANG ◽  
Yingdi SHI ◽  
Yanwen HOU ◽  
Bingshe HAN ◽  
Junfang ZHANG

2014 ◽  
Vol 39 (1) ◽  
pp. 26-30 ◽  
Author(s):  
Yu-zhi QIN ◽  
Jue CHEN ◽  
Zhen XING ◽  
Chang-zheng HE ◽  
Xing-yao XIONG

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 271
Author(s):  
Muhammad Imran ◽  
Asim Mahmood ◽  
Günter Neumann ◽  
Birte Boelt

Low temperature during germination hinders germination speed and early seedling development. Zn seed priming is a useful and cost-effective tool to improve germination rate and resistance to low temperature stress during germination and early seedling development. Spinach was tested to improve germination and seedling development with Zn seed priming under low temperature stress conditions. Zn priming increased seed Zn concentration up to 48 times. The multispectral imaging technique with VideometerLab was used as a non-destructive method to differentiate unprimed, water- and Zn-primed spinach seeds successfully. Localization of Zn in the seeds was studied using the 1,5-diphenyl thiocarbazone (DTZ) dying technique. Active translocation of primed Zn in the roots of young seedlings was detected with laser confocal microscopy. Zn priming of spinach seeds at 6 mM Zn showed a significant increase in germination rate and total germination under low temperature at 8 °C.


Sign in / Sign up

Export Citation Format

Share Document