scholarly journals Role of endogenous bone marrow cells in long-term repair mechanisms after myocardial infarction

2008 ◽  
Vol 12 (6b) ◽  
pp. 2867-2874 ◽  
Author(s):  
Kathrin I. Odörfer ◽  
Ingrid Walter ◽  
Miriam Kleiter ◽  
Eric P. Sandgren ◽  
Reinhold G. Erben
2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Marcin Wysoczynski ◽  
Mitesh Solanki ◽  
Rakesh Ponnapureddy ◽  
Rakesh Gadde ◽  
Roberto Bolli ◽  
...  

Background: Studies examining the role of bone marrow CXCR4 in the response to myocardial infarction (MI) using the CXCR4 antagonist AMD3100 in animal myocardial infarction (MI) models are inconclusive. Chronic AMD3100 administration exacerbated injury and myocardial dysfunction while bolus injection immediately post-MI reduced size of the injury with improvement of systolic function. Aims: As MI mobilizes bone marrow stem/progenitor cells and immune cells into peripheral blood which then home to injured myocardium to facilitate and impair, respectively, regeneration and healing we were interested in the role of bone marrow CXCR4 on functional recovery, angiogenesis, and cardiomyogenesis. Experimental Approach: To define the role of CXCR4 in the bone marrow we generated chimeras with bone marrow from CXCR4 flox/flox mice. Wild type mice were transplanted with CXCR4 flox/flox or CXCR4 flox/flox UBQ Cre bone marrow cells after a lethal dose of irradiation. CXCR4 deletion was induced 5 weeks after transplant with Tamoxifen. The coronary artery was ligated after another two weeks. Function was evaluated five weeks post MI function by echo and pathology analysis was performed to measure scar size, collagen content, hypertrophy, capillary counts, CSCs counts, angiogenesis and cardiomyogenesis. Results: compared to wild type, mice with CXCR4 KO bone marrow had impaired LV systolic function evaluated 5 weeks post-MI by echocardiography. Morphometric analysis of Masson’s Trichrome stained sections confirmed LV exacerbated chamber enlargement (expansion index), larger scar and decreased infarcted wall thickness in mice with bone marrow cells deficient for CXCR4. More detailed analysis revealed c-kit positive CSC numbers were decreased as were proliferating c-kit CSC indicated by Ki67 staining. Decreased proliferation also correlated with reduced numbers of newly formed myocytes (αsarcomeric actin pos /BrdU pos ). Capillary and arteriole counts were also reduced in infarcted hearts of mice with CXCR4 KO bone marrow compared to wild type. Conclusion: based on these findings we can conclude that CXCR4 is necessary for bone marrow cell homing to infarcted myocardium to preserve LV function, regenerate lost myocardium, and promote angiogenesis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3581-3581
Author(s):  
Kana Inoue ◽  
Akiko Sumitomo ◽  
Natsumi Hasegawa ◽  
Ayuko Kasai ◽  
Kenji Yonezawa ◽  
...  

Abstract The mammalian TRAP/Mediator complex is a master transcriptional regulatory complex that integrates signals of diverse activators and recruits RNA polymerase II and other general factors to activate transcription. The TRAP220/MED1 subunit was originally identified as a ligand-dependent coactivator specific for nuclear receptors. We have previously shown through biochemical and mouse genetic studies that MED1 is essential for embryogenesis, cell growth/differentiation and homeostasis, and that it stimulates nuclear receptor-mediated myelomonopoiesis. MED1 also integrates other activators such as GATA-1 and C/EBPβ and appears to mediate erythropoiesis as well. The niche cells in the bone marrow plays a pivotal role in the maintenance of hematopoietic stem/progenitor cells (HSPCs). In this study, we employed mouse embryonic fibroblasts (MEFs) as a model to analyze the role of MED1 in the niche, since MEFs have a mesenchymal feature with the osteoblastic precursor lineage and are known to support HSPCs. To establish an experimental system, we crossed Med1 and p53 double knockouts to obtain Med1+/+/p53−/− and Med1−/−/p53−/− E10.0 embryos from a single female and prepared stable MEF lines. Then the Med1−/−/p53−/− MEFs were stably transfected with a MED1 expression vector (Rev-Med1−/− MEFs) or a control empty vector. When normal mouse bone marrow cells were cocultured with these MEFs treated with mitomycin C for a short period of 2 weeks, cell counts, live cells (MTT assay) and a DNA synthesis (BrdU incorporation) of marrow cells were measured. The number of live cells as well as DNA synthesis on Med1−/− MEFs was significantly decreased during this period, but those on Rev-Med1−/− MEFs recovered to the control levels. Thus the growth stress on MEFs appears to be attenuated on Med1−/− MEFs. When apoptosis of the marrow cells was measured, both the FITC-dUTP incorporation by TdT and annexin V/PI double positive cells were lower for Med1−/− MEFs, indicating that apoptosis was also attenuated. We next assessed the role of MED1 in MEFs to support long-term bone marrow culture. After bone marrow cells were cultured on mitomycin C-treated MEFs for 8 weeks in Myelocult M5300 (StemCell Technologies) or IMDM supplemented with BIT9500 (StemCell Technologies) and LDL, progenitor cells (adherent and nonadherent) were collected and cultured in complete methylcellulose (Methocult M3434; StemCell Technologies), and colonies were counted. The number of both myeloid and erythroid colonies were significantly attenuated (0 to 40% depending on experimental conditions) for cells on Med1−/− MEFs, but colonies for cells cultured on Rev-Med1−/− MEFs recovered to the control level. In order to exclude the possibility that lot differences among MEFs or p53 depletion might have affected the results, we next prepared primary Med1+/+ and Med1−/− MEFs by crossing Med1+/− mice and conducted the long-term culture experiments using these MEFs. The attenuated number of colonies for cells cocultured with Med1−/− MEFs (circa 10% of the control) was reproduced repeatedly, indicating that the observed role of MED1 in MEFs to support HSPCs is intrinsic. Since MED1 converges signals from a series of activators on specific promoters and activates transcription, one or some products of the downstream target genes in MEFs may be responsible for the observed activity to maintain HSPCs. In search for candidate MED1 target gene products among a series of known molecules that possess an activity on HSPCs, only the expression of osteopontin was found to be attenuated in Med1−/− MEFs and reverted in Rev-Med1−/− MEFs. Other factors including Angiopoietin-1 and Jagged-1 were comparable. This fact contrasts with the previous observation of osteopontin knockouts where the null niche cells that restricted the size of HSPC number overexpressed these factors. We next assessed the role of MED1 on the osteopontin promoter. We focused on vitamin D receptor (VDR) and Runx2 among the activators and tested MEFs by luciferase reporter assays. The basal level of transcription without any activators in Med1−/− MEFs was about half of the control. Moreover, both the activation by Runx2 and the liganddependent VDR function were significantly attenuated in Med1−/− MEFs. These results indicate that transcriptional coactivator MED1 in niche cells plays an important role in HSPCs support, and that osteopontin may be one of the downstream candidate target genes for MED1.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4136-4142 ◽  
Author(s):  
I Kawashima ◽  
ED Zanjani ◽  
G Almaida-Porada ◽  
AW Flake ◽  
H Zeng ◽  
...  

Using in utero transplantation into fetal sheep, we examined the capability of human bone marrow CD34+ cells fractionated based on Kit protein expression to provide long-term in vivo engraftment. Twelve hundred to 5,000 CD34+ Kit-, CD34+ Kit(low), and CD34+ Kit(high) cells were injected into a total of 14 preimmune fetal sheep recipients using the amniotic bubble technique. Six fetuses were killed in utero 1.5 months after bone marrow cell transplantation. Two fetuses receiving CD34+ Kit(low) cells showed signs of engraftment according to analysis of CD45+ cells in their bone marrow cells and karyotype studies of the colonies grown in methylcellulose culture. In contrast, two fetuses receiving CD34+ Kit(high) cells and two fetuses receiving CD34+ Kit- cells failed to show evidence of significant engraftment. Two fetuses were absorbed. A total of six fetuses receiving different cell populations were allowed to proceed to term, and the newborn sheep were serially examined for the presence of chimerism. Again, only the two sheep receiving CD34+ Kit(low) cells exhibited signs of engraftment upon serial examination. Earlier in studies of murine hematopoiesis, we have shown stage-specific changes in Kit expression by the progenitors. The studies of human cells reported here are in agreement with observations in mice, and indicate that human hematopoietic stem cells are enriched in the Kit(low) population.


1998 ◽  
Vol 331 (3) ◽  
pp. 733-742 ◽  
Author(s):  
Masafumi YOSHIMURA ◽  
Yoshito IHARA ◽  
Tetsuo NISHIURA ◽  
Yu OKAJIMA ◽  
Megumu OGAWA ◽  
...  

Several sugar structures have been reported to be necessary for haemopoiesis. We analysed the haematological phenotypes of transgenic mice expressing β-1,4 N-acetylglucosaminyltransferase III (GnT-III), which forms bisecting N-acetylglucosamine on asparagine-linked oligosaccharides. In the transgenic mice, the GnT-III activity was elevated in bone marrow, spleen and peripheral blood and in isolated mononuclear cells from these tissues, whereas no activity was found in these tissues of wild-type mice. Stromal cells after long-term cultures of transgenic-derived bone marrow and spleen cells also showed elevated GnT-III activity, compared with an undetectable activity in wild-type stromal cells. As judged by HPLC analysis, lectin blotting and lectin cytotoxicity assay, bisecting GlcNAc residues were increased on both blood cells and stromal cells from bone marrow and spleen in transgenic mice. The transgenic mice displayed spleen atrophy, hypocellular bone marrow and pancytopenia. Bone marrow cells and spleen cells from transgenic mice produced fewer haemopoietic colonies. After lethal irradiation followed by bone marrow transplantation, transgenic recipient mice showed pancytopenia compared with wild-type recipient mice. Bone marrow cells from transgenic donors gave haematological reconstitution at the same level as wild-type donor cells. In addition, non-adherent cell production was decreased in long-term bone marrow cell cultures of transgenic mice. Collectively these results indicate that the stroma-supported haemopoiesis is compromised in transgenic mice expressing GnT-III, providing the first demonstration that the N-glycans have some significant roles in stroma-dependent haemopoiesis.


1971 ◽  
Vol 134 (5) ◽  
pp. 1144-1154 ◽  
Author(s):  
David G. Tubergen ◽  
Joseph D. Feldman

Adoptive transfer experiments were performed to define the immunological role of thymus and bone marrow cells in the induction of delayed hypersensitivity (DH). The results indicated the following, (a) Bone marrow from immune donors contained cells capable of being stimulated by antigen to initiate the expression of DH. (b) Bone marrow from nonimmune or tolerant donors contained cells that were needed to complete the expression of DH after the infusion of immune lymph node cells. (c) Normal bone marrow and thymus cells cooperated in the irradiated recipient to induce the most vigorous skin reactions to specific antigen; these reactions were seen only when the recipients were stimulated by antigen. Either cell type alone was ineffective. (d) In the presence of tolerant bone marrow cells, thymus cells from immune donors gave a more vigorous response than did thymus cells from normal or tolerant donors. (e) There was suggestive evidence that thymus cells were the source of trigger elements that initiated DH. (f) Antigen in the irradiated recipient was necessary to induce DH after infusion of bone marrow cells alone, or bone marrow and thymus cells together.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4336-4336
Author(s):  
Jumpei Teramachi ◽  
Kazuaki Miyagawa ◽  
Delgado-Calle Jesus ◽  
Jolene Windle ◽  
Noriyoshi Kurihara ◽  
...  

Multiple myeloma (MM) is largely incurable, and is characterized by devastating bone destruction caused by increased osteoclast (OCL) differentiation and bone resorption in more than 85% of MM patients. OCLs in MM not only promote bone resorption but also increase MM cell growth and drug resistance. Despite recent advances in anti-myeloma treatment, development of anti-MM drug resistance is a major limitation of MM therapy. Therefore, new treatment modalities are urgently needed to overcome drug resistance and decrease bone resorption. IGF1 is a crucial factor for tumor cell growth and survival of malignant cells, especially in MM. IGFI also contributes to development of drug resistance of MM cells to anti-MM agents, including proteasome inhibitors and immunomodulatory agents, but how OCLs contribute to drug resistance is still not clearly delineated. We found that IGF1 was highly expressed in OCLs attached to bone and bone marrow myeloid cells in vivo, and the expression levels of IGF1 in OCLs from MM bearing mice is higher than in normal OCLs. Intriguingly, OCLs produced more IGF1 (0.8 ng/ml/protein) than MM cells (not detected) and bone marrow stromal cells (BMSCs) (0.4 ng/ml/protein) in vitro. In addition, IGF1 protein expression in OCLs was upregulated (1.8 fold) by treatment with conditioned media (CM) from 5TGM1 murine MM cells, TNF-α or IL-6, major paracrine factors that are increased in the bone marrow microenvironment in MM. These results suggest that OCLs are a major source of local IGF1 in the MM bone marrow microenvironment. To further characterize the role of OCL-derived IGF1, we generated a novel mouse with targeted deletion of Igf1 in OCLs (IGF1-/--OCL), and assessed the role of OCL-derived IGF1 in drug resistance of MM cells and bone destruction. Treatment of 5TGM1 cells with bortezomib (BTZ) (3 nM, 48 hours) decreased the viability of 5TGM1 cells by 50%. Importantly, the cytotoxic effects of BTZ on MM cells were decreased (by 5%) when MM cells were cocultured with OCLs from wild type (WT) mice. In contrast, coculture of MM cells with IGF1-/--OCLs or WT-OCLs treated with IGF1 neutralizing antibody (IGF1-ab) did not block BTZ's effects on MM cell death. Consistent with these results, coculture of MM cells with IGF1-/--OCLs or WT-OCLs treated with IGF1-ab resulted in BTZ-induced caspase-dependent apoptosis in MM cells. We next examined the effects of OCLs on the signaling pathways responsible for MM cell survival. WT-OCL-CM promptly induced the phosphorylation of Akt and activation of p38, ERK and NF-κB in MM cells. However, these pathways were not activated by MM cells treated with IGF1-/--OCL-CM or IGF1-ab-treated WT-OCL-CM. Since adhesion of MM cells to BMSCs via interaction of VLA-4 and VCAM-1 plays a critical role in cell adhesion-mediated drug resistance (CAMDR) in MM, we tested if treatment of human BMSCs with human OCL-CM upregulated VCAM-1 expression. We found that OCL-CM upregulated VCAM-1 expression on BMSCs (x fold). In contrast, treatment of BMSCs with OCLs treated with IGF1-ab blocked VCAM-1 induction. These data suggest that OCL-derived IGF1 can contribute to MM cell drug resistance in the bone marrow microenvironment. We then examined the role of IGF1 inhibition on osteoclastogenesis and the bone resorption capacity of OCLs. RANK ligand induced the expression of cathepsin K and NFATc1 in CD11b+ bone marrow cells from WT mice, differentiation markers of OCLs, and the formation of TRAP-positive multinucleated OCLs. However, OCLs formed by RANK ligand treatment of CD11b+ bone marrow cells from IGF1-/- mice had markedly decreased cathepsin K and NFATc1 expression and OCL formation. Next, we tested the bone resorption capacity of OCLs formed by CD11b+ bone marrow cells from IGF1-/- mice vs. WT mice. Similar numbers of OCLs were cultured with RANK ligand on bone slices for 72 hours. The bone resorption activity of Igf1-/--OCLs was significantly decreased (70%) compared with WT-OCLs. These results suggest that OCL-derived IGF1 plays a critical role in MM drug resistance and bone destruction, and that inhibition of the effect of IGF1 in OCLs should decrease MM drug resistance and bone destruction. Disclosures Roodman: Amgen trial of Denosumab versus Zoledronate: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document