scholarly journals MicroRNAs in embryonic stem cells and early embryonic development

2008 ◽  
Vol 12 (6a) ◽  
pp. 2181-2188 ◽  
Author(s):  
Louise C. Laurent
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Heyao Zhang ◽  
Xuepeng Wang ◽  
Jingsheng Li ◽  
Ronghua Shi ◽  
Ying Ye

Embryonic stem cells (ESCs) can self-renew indefinitely and maintain their pluripotency status. The pluripotency gene regulatory network is critical in controlling these properties and particularly chromatin remodeling complexes. In this review, we summarize the research progresses of the functional and mechanistic studies of BAF complex in mouse ESCs and early embryonic development. A discussion of the mechanistic bases underlying the distinct phenotypes upon the deletion of different BAF subunits in ESCs and embryos will be highlighted.


Open Biology ◽  
2015 ◽  
Vol 5 (8) ◽  
pp. 150092 ◽  
Author(s):  
Zhen-Ao Zhao ◽  
Yang Yu ◽  
Huai-Xiao Ma ◽  
Xiao-Xiao Wang ◽  
Xukun Lu ◽  
...  

Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β -catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development.


Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2454-2462 ◽  
Author(s):  
Chih-Rong Shyr ◽  
Hong-Yo Kang ◽  
Meng-Yin Tsai ◽  
Ning-Chun Liu ◽  
Pei-Yu Ku ◽  
...  

1990 ◽  
Vol 10 (12) ◽  
pp. 6755-6758
Author(s):  
B R Stanton ◽  
S W Reid ◽  
L F Parada

We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.


2016 ◽  
Vol 65 ◽  
pp. 46-58 ◽  
Author(s):  
Mohamed M. Bekhite ◽  
Andreas Finkensieper ◽  
Fouad A. Abou-Zaid ◽  
Ibrahim K. El-Shourbagy ◽  
Nabil K. EL-Fiky ◽  
...  

2020 ◽  
Vol 27 (12) ◽  
pp. 3273-3288
Author(s):  
Hye In Cho ◽  
Min Seong Kim ◽  
Jina Lee ◽  
Byong Chul Yoo ◽  
Kyung Hee Kim ◽  
...  

AbstractBrpf-histone acetyltransferase (HAT) complexes have important roles in embryonic development and regulating differentiation in ESCs. Among Brpf family, Brpf3 is a scaffold protein of Myst2 histone acetyltransferase complex that plays crucial roles in gene regulation, DNA replication, development as well as maintaining pluripotency in embryonic stem cells (ESCs). However, its biological functions in ESCs are not elucidated. In this study, we find out that Brpf3 protein level is critical for Myst2 stability and E3 ligase Huwe1 functions as a novel negative regulator of Myst2 via ubiquitin-mediated degradation. Importantly, Brpf3 plays an antagonistic role in Huwe1-mediated degradation of Myst2, suggesting that protein–protein interaction between Brpf3 and Myst2 is required for retaining Myst2 stability. Further, Brpf3 overexpression causes the aberrant upregulation of Myst2 protein levels which in turn induces the dysregulated cell-cycle progression and also delay of early embryonic development processes such as embryoid-body formation and lineage commitment of mouse ESCs. The Brpf3 overexpression-induced phenotypes can be reverted by Huwe1 overexpression. Together, these results may provide novel insights into understanding the functions of Brpf3 in proper differentiation as well as cell-cycle progression of ESCs via regulation of Myst2 stability by obstructing Huwe1-mediated ubiquitination. In addition, we suggest that this is a useful report which sheds light on the function of an unknown gene in ESC field.


1990 ◽  
Vol 10 (12) ◽  
pp. 6755-6758 ◽  
Author(s):  
B R Stanton ◽  
S W Reid ◽  
L F Parada

We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.


2020 ◽  
Author(s):  
Eishi Aizawa ◽  
Charles-Etienne Dumeau ◽  
Remo Freimann ◽  
Giulio Di Minin ◽  
Anton Wutz

AbstractIn mammals, the fusion of two gametes, an oocyte and a spermatozoon, during fertilization forms a totipotent zygote. There has been no reported case of natural parthenogenesis, in which embryos develop from unfertilized oocytes. The genome and epigenetic information of haploid gametes are crucial for the proper development of embryos. Haploid embryonic stem cells (haESCs) are unique stem cells established from uniparental blastocysts and possess only one set of chromosomes. Previous studies have shown that sperm or oocyte genome can be replaced by haESCs with or without manipulation of genomic imprinting for generation of mice. Recently, these remarkable semi-cloning methods have been applied for screening of key factors of mouse embryonic development. While haESCs have been applied as substitute of gametic genome, the fundamental mechanism how haESCs contribute to the genome of totipotent embryos is unclear. Here, we show the generation of fertile semi-cloned mice by injection of parthenogenetic haESCs (phaESCs) into oocytes after deletions of two differentially methylated regions (DMRs), the IG-DMR and H19-DMR. For characterizing the genome of semi-cloned embryos further we establish ESC lines from semi-cloned blastocysts. We report that polyploid karyotypes are observed frequently in semi-cloned ESCs (scESCs). Our results confirm that mitotically arrested phaESCs provide high efficiency for semi-cloning when the IG-DMR and H19-DMR are deleted. In addition, we highlight the occurrence of polyploidy that needs to be considered for further improvement for development of semi-cloned embryos derived by haESC injection.


Sign in / Sign up

Export Citation Format

Share Document