scholarly journals BAF Complex in Embryonic Stem Cells and Early Embryonic Development

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Heyao Zhang ◽  
Xuepeng Wang ◽  
Jingsheng Li ◽  
Ronghua Shi ◽  
Ying Ye

Embryonic stem cells (ESCs) can self-renew indefinitely and maintain their pluripotency status. The pluripotency gene regulatory network is critical in controlling these properties and particularly chromatin remodeling complexes. In this review, we summarize the research progresses of the functional and mechanistic studies of BAF complex in mouse ESCs and early embryonic development. A discussion of the mechanistic bases underlying the distinct phenotypes upon the deletion of different BAF subunits in ESCs and embryos will be highlighted.

Open Biology ◽  
2015 ◽  
Vol 5 (8) ◽  
pp. 150092 ◽  
Author(s):  
Zhen-Ao Zhao ◽  
Yang Yu ◽  
Huai-Xiao Ma ◽  
Xiao-Xiao Wang ◽  
Xukun Lu ◽  
...  

Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β -catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development.


Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2454-2462 ◽  
Author(s):  
Chih-Rong Shyr ◽  
Hong-Yo Kang ◽  
Meng-Yin Tsai ◽  
Ning-Chun Liu ◽  
Pei-Yu Ku ◽  
...  

Author(s):  
Ying Ye ◽  
Xi Chen ◽  
Wensheng Zhang

The unique capability of embryonic stem cells (ESCs) to maintain and adjust the equilibrium between self-renewal and multi-lineage cellular differentiation contributes indispensably to the integrity of all developmental processes, leading to the advent of an organism in its adult form. The ESC fate decision to favor self-renewal or differentiation into specific cellular lineages largely depends on transcriptome modulations through gene expression regulations. Chromatin remodeling complexes play instrumental roles to promote chromatin structural changes resulting in gene expression changes that are key to the ESC fate choices governing the equilibrium between pluripotency and differentiation. BAF (Brg/Brahma-associated factors) or mammalian SWI/SNF complexes employ energy generated by ATP hydrolysis to change chromatin states, thereby governing the accessibility of transcriptional regulators that ultimately affect transcriptome and cell fate. Interestingly, the requirement of BAF complex in self-renewal and differentiation of ESCs has been recently shown by genetic studies through gene expression modulations of various BAF components in ESCs, although the precise molecular mechanisms by which BAF complex influences ESC fate choice remain largely underexplored. This review surveys these recent progresses of BAF complex on ESC functions, with a focus on its role of conditioning the pluripotency and differentiation balance of ESCs. A discussion of the mechanistic bases underlying the genetic requirements for BAF in ESC biology as well as the outcomes of its interplays with key transcription factors or other chromatin remodelers in ESCs will be highlighted.


1990 ◽  
Vol 10 (12) ◽  
pp. 6755-6758
Author(s):  
B R Stanton ◽  
S W Reid ◽  
L F Parada

We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.


2007 ◽  
Vol 19 (1) ◽  
pp. 231
Author(s):  
S. Wang ◽  
X. Tang ◽  
Y. Niu ◽  
H. Chen ◽  
T. Li ◽  
...  

The rabbit, as a laboratory animal model, has several advantages in the study of human physiological disorders. In this study, stable putative pluripotent rabbit embryonic stem cells (rESCs) were derived from in vivo-fertilized and in vitro-cultured blastocysts. The rabbit ICMs were obtained by 0.05% trypsin–0.008% EDTA treatment and mechanical separation; the ES-like cell colonies seen several days later. ICM-derived outgrowths which were treated with 5 mg/mL-1 dispase, followed by 0.05% trypsin–0.008% EDTA, were mechanically disaggregated into small clumps and reseeded on MEFs. The putative ES cell lines maintained expression of pluripotent cells markers and normal XY karyotype for long periods of culture (>1 month). The putative rESCs expressed alkaline phosphatase, transcription factor Oct-4, stage-specific embryonic antigens (SSEA-1, SSEA-3, and SSEA-4), and tumor-related antigens (TRA-1-60 and TRA-1-81). The morphological characteristics of the putative ESCs are closer to those of human ESCs; their high speed of proliferation, however, is closer to that of mouse ESCs. Putative rabbit ESCs were induced to differentiate into many cell types including trophoblast cells, similar to primate ESCs, in vitro, and formed teratomas with derivatives of the 3 major germ layers in vivo when injected into SCID mice. Using RT-PCR measurement, but with some differences in ligands and inhibitors, and comparing with human and mouse ESCs, the putative rabbit ESCs expressed similar genes related to pluripotency (Oct-4, Nanog, SOX2, and UTF-1) and similar genes of FGF, WNT, and TGF signaling pathways related to the proliferation and self-renewal. Our further research work showed that TGF beta and FGF pathways cooperate to maintain pluripotency of rabbit ESCs similar to those of human ES cells.


PLoS ONE ◽  
2010 ◽  
Vol 5 (4) ◽  
pp. e9937 ◽  
Author(s):  
Rodoniki Athanasiadou ◽  
Dina de Sousa ◽  
Kevin Myant ◽  
Cara Merusi ◽  
Irina Stancheva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document