Effects of Cholinoceptor Blocking Drugs, Adrenoceptor Stimulants, and Calcium Antagonists on the Transmurally Stimulated Guinea-pig Urinary Bladder in Vitro and in Vivo

2009 ◽  
Vol 44 (3) ◽  
pp. 228-234 ◽  
Author(s):  
C. Sjögren ◽  
K.-E. Anderson
1991 ◽  
Vol 146 (2 Part 1) ◽  
pp. 454-457 ◽  
Author(s):  
Young Soo Kim ◽  
Penelope A. Longhurst ◽  
Alan J. Wein ◽  
Robert M. Levin

1976 ◽  
Vol 36 (02) ◽  
pp. 401-410 ◽  
Author(s):  
Buichi Fujttani ◽  
Toshimichi Tsuboi ◽  
Kazuko Takeno ◽  
Kouichi Yoshida ◽  
Masanao Shimizu

SummaryThe differences among human, rabbit and guinea-pig platelet adhesiveness as for inhibitions by adenosine, dipyridamole, chlorpromazine and acetylsalicylic acid are described, and the influence of measurement conditions on platelet adhesiveness is also reported. Platelet adhesiveness of human and animal species decreased with an increase of heparin concentrations and an increase of flow rate of blood passing through a glass bead column. Human and rabbit platelet adhesiveness was inhibited in vitro by adenosine, dipyridamole and chlorpromazine, but not by acetylsalicylic acid. On the other hand, guinea-pig platelet adhesiveness was inhibited by the four drugs including acetylsalicylic acid. In in vivo study, adenosine, dipyridamole and chlorpromazine inhibited platelet adhesiveness in rabbits and guinea-pigs. Acetylsalicylic acid showed the inhibitory effect in guinea-pigs, but not in rabbits.


2011 ◽  
Vol 107 (2) ◽  
pp. 310-317 ◽  
Author(s):  
Xinhua Zhang ◽  
Dwaraka Srinivasa R. Kuppam ◽  
Arnold Melman ◽  
Michael E. DiSanto

Development ◽  
1980 ◽  
Vol 60 (1) ◽  
pp. 405-418
Author(s):  
E. B. Ilgren

The growth of mouse trophectoderm depends upon the presence of the inner cell mass. Whether this applies to other species of mammals is not known. To investigate this problem, the guinea pig was selected for two reasons. Firstly, the growth of guinea-pig trophoblast resembles that of man. Secondly, earlier studies suggest that the proliferation of guinea-pig trophectoderm may not be under ICM control. Therefore, in the present study, the guinea-pig blastocyst was cut microsurgically to yield two tissue fragments. These contained roughly equal numbers of trophectodermal cells, one fragment being composed only of trophectoderm and the other containing ICM tissue as well. Subsequently, the growth of these mural and polar fragments was followed in vitro since numerous technical difficulties make an in vivo analysis of this problem impracticable. In a manner similar to the mouse, the isolated mural trophectoderm of the guinea pig stopped dividing and became giant. In contrast, guinea-pig polar fragments formed egg-cylinder-like structures. The latter contained regions structurally similar to two presumptive polar trophectodermal derivatives namely the ectoplacental and extraembryonic ectodermal tissues. These findings suggest that guinea-pig trophectodermal growth may occur in a manner similar to the mouse and thus be under ICM control.


2018 ◽  
Vol 33 (6) ◽  
pp. 808-818 ◽  
Author(s):  
Jiankui Li ◽  
Xi Chen ◽  
Kaijian Ling ◽  
Zhiqing Liang ◽  
Huicheng Xu

Introduction and hypothesis: Pelvic support structure injury is the major cause of pelvic organ prolapse. At present, polypropylene-based filler material has been suggested as a common method to treat pelvic organ prolapse. However, it cannot functionally rehabilitate the pelvic support structure. In addition to its poor long-term efficiency, the urinary bladder matrix was the most suitable biological scaffold material for pelvic floor repair. Here, we hypothesize that anti-sca-1 monoclonal antibody and basic fibroblast growth factor were cross-linked to urinary bladder matrix to construct a two-factor bioscaffold for pelvic reconstruction. Methods Through a bispecific cross-linking reagent, sulfosuccinimidyl 4-[N-maleimidomethyl] cyclohexane-1-carboxylate (sulfo-smcc) immobilized anti-sca-1 and basic fibroblast growth factor to urinary bladder matrix. Then scanning electron microscope and plate reader were used to detect whether the anti-sca-1/basic fibroblast growth factor-urinary bladder matrix scaffold was built successfully. After that, the capacity of enriching sca-1 positive cells was measured both in vitro and in vivo. In addition, we evaluated the differentiation capacity and biocompatibility of the scaffold. Finally, western blotting was used to detect the level of fibulin-5 protein. Results The scanning electron microscope and plate reader revealed that the double-factor biological scaffold was built successfully. The scaffold could significantly enrich a large number of sca-1 positive cells both in vitro and in vivo, and obviously accelerate cells and differentiate functional tissue with good biocompatibility. Moreover, the western blotting showed that the scaffold could improve the expression of fibulin-5 protein. Conclusion The anti-sca-1/basic fibroblast growth factor-urinary bladder matrix scaffold revealed good biological properties and might serve as an ideal scaffold for pelvic reconstruction.


1937 ◽  
Vol 37 (3) ◽  
pp. 471-473 ◽  
Author(s):  
J. Gordon ◽  
N. Wood

In earlier papers (Gordon, 1930) it was shown that congo red has an inactivating effect on serum complement, both haemolytic and bactericidal, and that this effect can be reversed by treating the serum and congo red mixture with charcoal, the charcoal removing the congo red and leaving the complement active again. A similar reversal of inactivation is obtained by using instead of the charcoal, heated serum (55° C. for 30 min.) or protein solutions. Later (Gordon, 1931), it was shown that congo red had an inactivating effect on the haemolysins of Streptococcus haemolyticus and B. welchii. The reversibility of this effect was not so easy to demonstrate as with complement. Charcoal had a destructive effect on the haemolysins and so could not be used. It was found, however, that when the concentration of congo red was just sufficient to neutralize the streptococcal haemolysin, the addition of cuprammonium artificial silk adsorbed the congo red and liberated the haemolysin. In the case of B. welchii this method of reversal was not suitable, as the artificial silk had a destructive effect on the haemolysin. Instead, reversibility was demonstrated by adding ox serum to the mixture of congo red and haemolysin. This brought about a redistribution of the congo red between the ox serum and the haemolysin and if the amount of congo red used had been only just sufficient to neutralize the haemolysin of B. welchii, then the haemolytic activity could again be demonstrated. Gordon and Robson (1933) showed that congo red interfered with the anaphylactic reaction tested both in vivo and in vitro, the guinea-pig uterus being used in the in vitro experiments, in which the inhibitory action of the dye was shown to be reversible. It was suggested that the congo red interfered with the entrance of antigen into the cell.


Sign in / Sign up

Export Citation Format

Share Document