SEQUENTIAL ULTRASTRUCTURAL CHANGES IN VINBLASTINE-INDUCED CELL DEATH OF SECRETORY AMELOBLASTS OF RAT INCISORS IN VIVO

Author(s):  
H. MOE
1995 ◽  
Vol 181 (5) ◽  
pp. 1661-1672 ◽  
Author(s):  
N Zamzami ◽  
P Marchetti ◽  
M Castedo ◽  
C Zanin ◽  
J L Vayssière ◽  
...  

In a number of experimental systems in which lymphocyte depletion was induced by apoptosis-inducing manipulations, no apoptotic morphology and ladder-type DNA fragmentation were detected among freshly isolated peripheral lymphocytes ex vivo. Here we report that one alteration that can be detected among splenocytes stimulated with lymphocyte-depleting doses of dexamethasone (DEX) in vivo is a reduced uptake of 3,3'dihexyloxacarbocyanine iodide (DiOC6[3]), a fluorochrome which incorporates into cells dependent upon their mitochondrial transmembrane potential (delta psi m). In contrast, ex vivo isolated splenocytes still lacked established signs of programmed cell death (PCD):DNA degradation into high or low molecular weight fragments, ultrastructural changes of chromatin arrangement and endoplasmatic reticulum, loss in viability, or accumulation of intracellular peroxides. Moreover, no changes in cell membrane potential could be detected. A reduced delta psi m has been observed in response to different agents inducing lymphoid cell depletion in vivo (superantigen and glucocorticoids [GC]), in mature T and B lymphocytes, as well as their precursors. DEX treatment in vivo, followed by cytofluorometric purification of viable delta psi mlow splenic T cells ex vivo, revealed that this fraction of cells is irreversibly committed to undergoing DNA fragmentation. Immediately after purification neither delta psi mlow, nor delta psi mhigh cells, exhibit detectable DNA fragmentation. However, after short-term culture (37 degrees C, 1 h) delta psi mlow cells show endonucleolysis, followed by cytolysis several hours later. Incubation of delta psi mlow cells in the presence of excess amount of the GC receptor antagonist RU38486 (which displaces DEX from the GC receptor), cytokines that inhibit DEX-induced cell death, or cycloheximide fails to prevent cytolysis. The antioxidant, N-acetylcysteine, as well as linomide, an agent that effectively inhibits DEX or superantigen-induced lymphocyte depletion in vivo, also stabilize the DiOC6(3) uptake. In contrast, the endonuclease inhibitor, aurintricarboxylic acid acts at later stages of apoptosis and only retards the transition from the viable delta psi mlow to the nonviable fraction. Altogether, these data suggest a sequence of PCD-associated events in which a reduction in delta psi m constitutes an obligate irreversible step of ongoing lymphocyte death, preceding other alterations of cellular physiology, and thus allowing for the ex vivo assessment of PCD.


Author(s):  
Rahat Ali ◽  
Shams Tabrez ◽  
Sajjadul Kadir Akand ◽  
Fazlur Rahman ◽  
Atahar Husein ◽  
...  

BackgroundVisceral leishmaniasis (VL), caused by the protozoan parasite Leishmania donovani (L. donovani), is the most severe form of leishmaniasis. It is largely responsible for significant morbidity and mortality in tropical and subtropical countries. Currently, available therapeutics have lots of limitations including high-cost, adverse side-effects, painful route of administration, less efficacy, and resistance. Therefore, it is time to search for cheap and effective antileishmanial agents. In the present work, we evaluated the antileishmanial potential of sesamol against promastigotes as well as intracellular amastigotes. Further, we tried to work out its mechanism of antileishmanial action on parasites through different assays.MethodologyIn vitro and ex vivo antileishmanial assays were performed to evaluate the antileishmanial potential of sesamol on L. donovani. Cytotoxicity was determined by MTT assay on human THP-1-derived macrophages. Sesamol-induced morphological and ultrastructural changes were determined by electron microscopy. H2DCFDA staining, JC-1dye staining, and MitoSOX red staining were performed for reactive oxygen assay (ROS), mitochondrial membrane potential, and mitochondrial superoxide, respectively. Annexin V/PI staining for apoptosis, TUNEL assay, and DNA laddering for studying sesamol-induced DNA fragmentation were performed.ConclusionsSesamol inhibited the growth and proliferation of L. donovani promastigotes in a dose-dependent manner. It also reduced the intracellular parasite load without causing significant toxicity on host-macrophages. Overall, it showed antileishmanial effects through induction of ROS, mitochondrial dysfunction, DNA fragmentation, cell cycle arrest, and apoptosis-like cell death to parasites. Our results suggested the possible use of sesamol for the treatment of leishmaniasis after further in vivo validations.


Author(s):  
S. Phyllis Steamer ◽  
Rosemarie L. Devine

The importance of radiation damage to the skin and its vasculature was recognized by the early radiologists. In more recent studies, vascular effects were shown to involve the endothelium as well as the surrounding connective tissue. Microvascular changes in the mouse pinna were studied in vivo and recorded photographically over a period of 12-18 months. Radiation treatment at 110 days of age was total body exposure to either 240 rad fission neutrons or 855 rad 60Co gamma rays. After in vivo observations in control and irradiated mice, animals were sacrificed for examination of changes in vascular fine structure. Vessels were selected from regions of specific interest that had been identified on photomicrographs. Prominent ultrastructural changes can be attributed to aging as well as to radiation treatment. Of principal concern were determinations of ultrastructural changes associated with venous dilatations, segmental arterial stenosis and tortuosities of both veins and arteries, effects that had been identified on the basis of light microscopic observations. Tortuosities and irregularly dilated vein segments were related to both aging and radiation changes but arterial stenosis was observed only in irradiated animals.


Author(s):  
Elsie M. B. Sorensen

The detoxification capacity of the liver is well documented for a variety of substances including ethanol, organic pesticides, drugs, and metals. The piscean liver, although less enzymatically active than the mammalian counterpart (1), contains endoplasmic reticulum with an impressive repertoire of oxidizing, reducing, and conjugating abilities (2). Histopathologic changes are kncwn to occur in fish hepatocytes following in vivo exposure to arsenic (3); however, ultrastructural changes have not been reported. This study involved the morphometric analysis of intracellular changes in fish parynchymal hepatocytes and correlation with arsenic concentration in the liver.Green sunfish (Lepomis cyanellus, R.) were exposed to 0, 30, or 60 ppm arsenic (as sodium arsenate) at 20°C for 1, 2, or 3 week intervals before removal of livers for quantification of the arsenic burden (using neutron activation analysis) and morphometric analysis of ultrastructural alterations. Livers were cut into 1 mm cubes for fixation, dehydration, and embedding.


2020 ◽  
Vol 31 (1) ◽  
pp. 3-10
Author(s):  
V. S. Nedzvetsky ◽  
V. Ya. Gasso ◽  
A. M. Hahut ◽  
I. A. Hasso

Cadmium is a common transition metal that entails an extremely wide range of toxic effects in humans and animals. The cytotoxicity of cadmium ions and its compounds is due to various genotoxic effects, including both DNA damage and chromosomal aberrations. Some bone diseases, kidney and digestive system diseases are determined as pathologies that are closely associated with cadmium intoxication. In addition, cadmium is included in the list of carcinogens because of its ability to initiate the development of tumors of several forms of cancer under conditions of chronic or acute intoxication. Despite many studies of the effects of cadmium in animal models and cohorts of patients, in which cadmium effects has occurred, its molecular mechanisms of action are not fully understood. The genotoxic effects of cadmium and the induction of programmed cell death have attracted the attention of researchers in the last decade. In recent years, the results obtained for in vivo and in vitro experimental models have shown extremely high cytotoxicity of sublethal concentrations of cadmium and its compounds in various tissues. One of the most studied causes of cadmium cytotoxicity is the development of oxidative stress and associated oxidative damage to macromolecules of lipids, proteins and nucleic acids. Brain cells are most sensitive to oxidative damage and can be a critical target of cadmium cytotoxicity. Thus, oxidative damage caused by cadmium can initiate genotoxicity, programmed cell death and inhibit their viability in the human and animal brains. To test our hypothesis, cadmium cytotoxicity was assessed in vivo in U251 glioma cells through viability determinants and markers of oxidative stress and apoptosis. The result of the cell viability analysis showed the dose-dependent action of cadmium chloride in glioma cells, as well as the generation of oxidative stress (p <0.05). Calculated for 48 hours of exposure, the LD50 was 3.1 μg×ml-1. The rates of apoptotic death of glioma cells also progressively increased depending on the dose of cadmium ions. A high correlation between cadmium concentration and apoptotic response (p <0.01) was found for cells exposed to 3–4 μg×ml-1 cadmium chloride. Moreover, a significant correlation was found between oxidative stress (lipid peroxidation) and induction of apoptosis. The results indicate a strong relationship between the generation of oxidative damage by macromolecules and the initiation of programmed cell death in glial cells under conditions of low doses of cadmium chloride. The presented results show that cadmium ions can induce oxidative damage in brain cells and inhibit their viability through the induction of programmed death. Such effects of cadmium intoxication can be considered as a model of the impact of heavy metal pollution on vertebrates.


Author(s):  
Hongli Zhou ◽  
Minyu Zhou ◽  
Yue Hu ◽  
Yanin Limpanon ◽  
Yubin Ma ◽  
...  

AbstractAngiostrongylus cantonensis (AC) can cause severe eosinophilic meningitis or encephalitis in non-permissive hosts accompanied by apoptosis and necroptosis of brain cells. However, the explicit underlying molecular basis of apoptosis and necroptosis upon AC infection has not yet been elucidated. To determine the specific pathways of apoptosis and necroptosis upon AC infection, gene set enrichment analysis (GSEA) and protein–protein interaction (PPI) analysis for gene expression microarray (accession number: GSE159486) of mouse brain infected by AC revealed that TNF-α likely played a central role in the apoptosis and necroptosis in the context of AC infection, which was further confirmed via an in vivo rescue assay after treating with TNF-α inhibitor. The signalling axes involved in apoptosis and necroptosis were investigated via immunoprecipitation and immunoblotting. Immunofluorescence was used to identify the specific cells that underwent apoptosis or necroptosis. The results showed that TNF-α induced apoptosis of astrocytes through the RIP1/FADD/Caspase-8 axis and induced necroptosis of neurons by the RIP3/MLKL signalling pathway. In addition, in vitro assay revealed that TNF-α secretion by microglia increased upon LSA stimulation and caused necroptosis of neurons. The present study provided the first evidence that TNF-α was secreted by microglia stimulated by AC infection, which caused cell death via parallel pathways of astrocyte apoptosis (mediated by the RIP1/FADD/caspase-8 axis) and neuron necroptosis (driven by the RIP3/MLKL complex). Our research comprehensively elucidated the mechanism of cell death after AC infection and provided new insight into targeting TNF-α signalling as a therapeutic strategy for CNS injury.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1446
Author(s):  
Tingting Jin ◽  
Jun Lin ◽  
Yingchao Gong ◽  
Xukun Bi ◽  
Shasha Hu ◽  
...  

Both calcium-independent phospholipase A2 beta (iPLA2β) and endoplasmic reticulum (ER) stress regulate important pathophysiological processes including inflammation, calcium homeostasis and apoptosis. However, their roles in ischemic heart disease are poorly understood. Here, we show that the expression of iPLA2β is increased during myocardial ischemia/reperfusion (I/R) injury, concomitant with the induction of ER stress and the upregulation of cell death. We further show that the levels of iPLA2β in serum collected from acute myocardial infarction (AMI) patients and in samples collected from both in vivo and in vitro I/R injury models are significantly elevated. Further, iPLA2β knockout mice and siRNA mediated iPLA2β knockdown are employed to evaluate the ER stress and cell apoptosis during I/R injury. Additionally, cell surface protein biotinylation and immunofluorescence assays are used to trace and locate iPLA2β. Our data demonstrate the increase of iPLA2β augments ER stress and enhances cardiomyocyte apoptosis during I/R injury in vitro and in vivo. Inhibition of iPLA2β ameliorates ER stress and decreases cell death. Mechanistically, iPLA2β promotes ER stress and apoptosis by translocating to ER upon myocardial I/R injury. Together, our study suggests iPLA2β contributes to ER stress-induced apoptosis during myocardial I/R injury, which may serve as a potential therapeutic target against ischemic heart disease.


Sign in / Sign up

Export Citation Format

Share Document