intracellular changes
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 23)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 22 (23) ◽  
pp. 12859
Author(s):  
Ellen Hertz ◽  
Marcus Saarinen ◽  
Per Svenningsson

G-protein-coupled receptors (GPCRs) are commonly pharmacologically modulated due to their ability to translate extracellular events to intracellular changes. Previously, studies have mostly focused on protein–protein interactions, but the focus has now expanded also to protein–lipid connections. GM1, a brain-expressed ganglioside known for neuroprotective effects, and GPR37, an orphan GPCR often reported as a potential drug target for diseases in the central nervous system, have been shown to form a complex. In this study, we looked into the functional effects. Endogenous GM1 was downregulated when stably overexpressing GPR37 in N2a cells (N2aGPR37-eGFP). However, exogenous GM1 specifically rescued N2aGPR37-eGFP from toxicity induced by the neurotoxin MPP+. The treatment did not alter transcription levels of GPR37 or the enzyme responsible for GM1 production, both potential mechanisms for the effect. However, GM1 treatment inhibited cAMP-dependent signaling from GPR37, here reported as potentially consecutively active, possibly contributing to the protective effects. We propose an interplay between GPR37 and GM1 as one of the many cytoprotective effects reported for GM1.


2021 ◽  
Author(s):  
David Moses ◽  
Karina Guadalupe ◽  
Feng Yu ◽  
Eduardo Flores ◽  
Anthony Perez ◽  
...  

Intrinsically disordered protein regions (IDRs) are ubiquitous in all proteomes and essential to cellular function. Unlike folded domains, IDRs exist in an ensemble of rapidly changing conformations. The sequence-encoded structural biases in IDR ensembles are important for function, but are difficult to resolve. Here, we reveal hidden structural preferences in IDR ensembles in vitro with two orthogonal structural methods (SAXS and FRET), and demonstrate that these structural preferences persist in cells using live cell microscopy. Importantly, we demonstrate that some IDRs have structural preferences that can adaptively respond to even mild intracellular environment changes, while other IDRs may display a remarkable structural resilience. We propose that the ability to sense and respond to changes in cellular physicochemical composition, or to resist such changes, is a sequence-dependent property of IDRs in organisms across all kingdoms of life.


2021 ◽  
Vol 22 (18) ◽  
pp. 9979
Author(s):  
Elena Heidenreich ◽  
Tilman Pfeffer ◽  
Tamara Kracke ◽  
Nils Mechtel ◽  
Peter Nawroth ◽  
...  

Background: Amino acids have a central role in cell metabolism, and intracellular changes contribute to the pathogenesis of various diseases, while the role and specific organ distribution of dipeptides is largely unknown. Method: We established a sensitive, rapid and reliable UPLC-MS/MS method for quantification of 36 dipeptides. Dipeptide patterns were analyzed in brown and white adipose tissues, brain, eye, heart, kidney, liver, lung, muscle, sciatic nerve, pancreas, spleen and thymus, serum and urine of C57BL/6N wildtype mice and related to the corresponding amino acid profiles. Results: A total of 30 out of the 36 investigated dipeptides were detected with organ-specific distribution patterns. Carnosine and anserine were most abundant in all organs, with the highest concentrations in muscles. In liver, Asp-Gln and Ala-Gln concentrations were high, in the spleen and thymus, Glu-Ser and Gly-Asp. In serum, dipeptide concentrations were several magnitudes lower than in organ tissues. In all organs, dipeptides with C-terminal proline (Gly-Pro and Leu-Pro) were present at higher concentrations than dipeptides with N-terminal proline (Pro-Gly and Pro-Leu). Organ-specific amino acid profiles were related to the dipeptide profile with several amino acid concentrations being related to the isomeric form of the dipeptides. Aspartate, histidine, proline and serine tissue concentrations correlated with dipeptide concentrations, when the amino acids were present at the C- but not at the N-terminus. Conclusion: Our multi-dipeptide quantification approach demonstrates organ-specific dipeptide distribution. This method allows us to understand more about the dipeptide metabolism in disease or in healthy state.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cesar L. Cuevas-Velazquez ◽  
Tamara Vellosillo ◽  
Karina Guadalupe ◽  
Hermann Broder Schmidt ◽  
Feng Yu ◽  
...  

AbstractCell homeostasis is perturbed when dramatic shifts in the external environment cause the physical-chemical properties inside the cell to change. Experimental approaches for dynamically monitoring these intracellular effects are currently lacking. Here, we leverage the environmental sensitivity and structural plasticity of intrinsically disordered protein regions (IDRs) to develop a FRET biosensor capable of monitoring rapid intracellular changes caused by osmotic stress. The biosensor, named SED1, utilizes the Arabidopsis intrinsically disordered AtLEA4-5 protein expressed in plants under water deficit. Computational modeling and in vitro studies reveal that SED1 is highly sensitive to macromolecular crowding. SED1 exhibits large and near-linear osmolarity-dependent changes in FRET inside living bacteria, yeast, plant, and human cells, demonstrating the broad utility of this tool for studying water-associated stress. This study demonstrates the remarkable ability of IDRs to sense the cellular environment across the tree of life and provides a blueprint for their use as environmentally-responsive molecular tools.


2021 ◽  
Vol 7 (26) ◽  
pp. eabg3012
Author(s):  
Giuseppe Calculli ◽  
Hyun Ju Lee ◽  
Koning Shen ◽  
Uyen Pham ◽  
Marija Herholz ◽  
...  

Protein aggregation causes intracellular changes in neurons, which elicit signals to modulate proteostasis in the periphery. Beyond the nervous system, a fundamental question is whether other organs also communicate their proteostasis status to distal tissues. Here, we examine whether proteostasis of the germ line influences somatic tissues. To this end, we induce aggregation of germline-specific PGL-1 protein in germline stem cells of Caenorhabditis elegans. Besides altering the intracellular mitochondrial network of germline cells, PGL-1 aggregation also reduces the mitochondrial content of somatic tissues through long-range Wnt signaling pathway. This process induces the unfolded protein response of the mitochondria in the soma, promoting somatic mitochondrial fragmentation and aggregation of proteins linked with neurodegenerative diseases such as Huntington’s and amyotrophic lateral sclerosis. Thus, the proteostasis status of germline stem cells coordinates mitochondrial networks and protein aggregation through the organism.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3194
Author(s):  
Seung-Hye Yu ◽  
Manjesh Kumar ◽  
Il-Won Kim ◽  
Jeffrey D. Rimer ◽  
Tae-Jung Kim

Broad industrial application of zeolites increases the opportunity of inhalation. However, the potential impact of different type and composition of zeolite on the cytotoxicity is still unknown. Four types of synthetic zeolites with have been prepared for assessing the effect on lung fibroblast: two zeolite L (LTL-R and LTL-D, ZSM-5 (MFI-S), and faujasite (FAU-S). The cytotoxicity of zeolites on human lung fibroblast (IMR-90) was assessed using WST1 cell proliferation assay, mitochondrial function, membrane leakage of lactate dehydrogenase, reduced glutathione levels, and mitochondrial membrane potential were assessed under control. Intracellular changes were examined using transmission electron microscopy (TEM). Toxicity related gene expression were evaluated by PCR array. The result showed a significantly higher toxicity in IMR-90 cells with FAU-S than LTL-R, LTL-D and MFI-S exposure. TEM showed FAU-S, spheroidal zeolite with a low Si/Al ratio, was readily internalized forming numerous phagosomes in IMR-90 cells, while the largest and disc-shaped zeolites showed the lowest toxicity and were located in submembranous phagosomes in IMR-90 cells. Differential expression of TNF related genes was detected using PCR arrays and confirmed using qRT-PCR analysis of selected genes. Collectively, the exposure of different zeolites shows different toxicity on IMR-90 cells.


2021 ◽  
Author(s):  
Wei Li ◽  
Haofei Wang ◽  
Xiaorong Pan ◽  
Dejan Gagoski ◽  
Nela Durisic ◽  
...  

Diffuse axonal injury (DAI) is the most severe pathological feature of traumatic brain injury. However, how primary axonal injury is induced by mechanical stress and whether it could be mitigated remain unknown, largely due to the resolution limits of medical imaging approaches. Here we established an Axon-on-a-Chip (AoC) model for mimicking DAI and investigating its early cellular responses. By integrating computational fluid dynamics and microfluidic techniques, DAI was observed for the first time during mechanical stress, and a clear correlation between stress intensity and severity of DAI was elucidated. This AoC was further used to investigate the dynamic intracellular changes occurring simultaneously with stress, and identified delayed local Ca2+ surges escorted rapid disruption of periodic axonal cytoskeleton during the early stage of DAI. Compatible with high-resolution live-microscopy, this model hereby provides a versatile system to identify early mechanisms underlying DAI, offering a platform for screening effective treatments to alleviate brain injuries.


2021 ◽  
Vol 55 (S1) ◽  
pp. 135-160

Cells are constantly exposed to the risk of volume perturbation under physiological conditions. The increase or decrease in cell volume accompanies intracellular changes in cell membrane tension, ionic strength/concentration and macromolecular crowding. To avoid deleterious consequences caused by cell volume perturbation, cells have volume recovery systems that regulate osmotic water flow by transporting ions and organic osmolytes across the cell membrane. Thus far, a number of biomolecules have been reported to regulate cell volume. However, the question of how cells sense volume change and modulate volume regulatory systems is not fully understood. Recently, the existence and significance of phaseseparated biomolecular condensates have been revealed in numerous physiological events, including cell volume perturbation. In this review, we summarize the current understanding of cell volume-sensing mechanisms, introduce recent studies on biomolecular condensates induced by cell volume change and discuss how biomolecular condensates contribute to cell volume sensing and cell volume maintenance. In addition to previous studies of biochemistry, molecular biology and cell biology, a phase separation perspective will allow us to understand the complicated volume regulatory systems of cells.


2021 ◽  
Author(s):  
Cesar L Cuevas-Velazquez ◽  
Tamara Vellosillo ◽  
Karina Guadalupe ◽  
H Broder Schmidt ◽  
Feng Yu ◽  
...  

SUMMARYCell homeostasis is perturbed when dramatic shifts in the external environment cause the physical-chemical properties inside the cell to change. Methods that dynamically monitor these intracellular effects are currently lacking. Here, we leveraged the environmental sensitivity and structural plasticity of intrinsically disordered regions (IDRs) to develop a FRET biosensor capable of monitoring rapid intracellular changes caused by osmotic stress. The biosensor, named SED1, utilizes the Arabidopsis intrinsically disordered AtLEA4-5 protein expressed in plants under water deficit. Computational modeling and in vitro studies reveal that SED1 is highly sensitive to macromolecular crowding. SED1 exhibits large and near-linear osmolarity-dependent changes in FRET inside living bacteria, yeast, plant, and human cells, demonstrating the broad utility of this tool for studying water-associated stress. This study demonstrates the remarkable ability of IDRs to sense the cellular environment across the tree of life and provides a blueprint for their use in environmentally-responsive molecular tools.


Sign in / Sign up

Export Citation Format

Share Document