Structural basis for cyclodextrin recognition by Thermoactinomyces vulgaris cyclo/maltodextrin-binding protein

FEBS Journal ◽  
2007 ◽  
Vol 274 (8) ◽  
pp. 2109-2120 ◽  
Author(s):  
Takashi Tonozuka ◽  
Akiko Sogawa ◽  
Mitsugu Yamada ◽  
Naoki Matsumoto ◽  
Hiromi Yoshida ◽  
...  
2001 ◽  
Vol 305 (4) ◽  
pp. 891-904 ◽  
Author(s):  
Artem G. Evdokimov ◽  
D.Eric Anderson ◽  
Karen M. Routzahn ◽  
David S. Waugh

Biochemistry ◽  
2009 ◽  
Vol 48 (11) ◽  
pp. 2431-2441 ◽  
Author(s):  
Ewen Lescop ◽  
Loïc Briand ◽  
Jean-Claude Pernollet ◽  
Eric Guittet

2013 ◽  
Vol 453 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Jingtan Su ◽  
Xiao Liang ◽  
Qiang Zhou ◽  
Guiyou Zhang ◽  
Hongzhong Wang ◽  
...  

ACC (amorphous calcium carbonate) plays an important role in biomineralization process for its function as a precursor for calcium carbonate biominerals. However, it is unclear how biomacromolecules regulate the formation of ACC precursor in vivo. In the present study, we used biochemical experiments coupled with bioinformatics approaches to explore the mechanisms of ACC formation controlled by ACCBP (ACC-binding protein). Size-exclusion chromatography, chemical cross-linking experiments and negative staining electron microscopy reveal that ACCBP is a decamer composed of two adjacent pentamers. Sequence analyses and fluorescence quenching results indicate that ACCBP contains two Ca2+-binding sites. The results of in vitro crystallization experiments suggest that one Ca2+-binding site is critical for ACC formation and the other site affects the ACC induction efficiency. Homology modelling demonstrates that the Ca2+-binding sites of pentameric ACCBP are arranged in a 5-fold symmetry, which is the structural basis for ACC formation. To the best of our knowledge, this is the first report on the structural basis for protein-induced ACC formation and it will significantly improve our understanding of the amorphous precursor pathway.


2014 ◽  
Vol 42 (13) ◽  
pp. 8705-8718 ◽  
Author(s):  
Fariha Khan ◽  
Mark A. Daniëls ◽  
Gert E. Folkers ◽  
Rolf Boelens ◽  
S. M. Saqlan Naqvi ◽  
...  

2020 ◽  
Vol 48 (6) ◽  
pp. 3356-3365 ◽  
Author(s):  
Jie Huang ◽  
Mitchell Ringuet ◽  
Andrew E Whitten ◽  
Sofia Caria ◽  
Yee Wa Lim ◽  
...  

Abstract SFPQ is a ubiquitous nuclear RNA-binding protein implicated in many aspects of RNA biogenesis. Importantly, nuclear depletion and cytoplasmic accumulation of SFPQ has been linked to neuropathological conditions such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Here, we describe a molecular mechanism by which SFPQ is mislocalized to the cytoplasm. We report an unexpected discovery of the infinite polymerization of SFPQ that is induced by zinc binding to the protein. The crystal structure of human SFPQ in complex with zinc at 1.94 Å resolution reveals intermolecular interactions between SFPQ molecules that are mediated by zinc. As anticipated from the crystal structure, the application of zinc to primary cortical neurons induced the cytoplasmic accumulation and aggregation of SFPQ. Mutagenesis of the three zinc-coordinating histidine residues resulted in a significant reduction in the zinc-binding affinity of SFPQ in solution and the zinc-induced cytoplasmic aggregation of SFPQ in cultured neurons. Taken together, we propose that dysregulation of zinc availability and/or localization in neuronal cells may represent a mechanism for the imbalance in the nucleocytoplasmic distribution of SFPQ, which is an emerging hallmark of neurodegenerative diseases including AD and ALS.


2019 ◽  
Vol 14 (9) ◽  
pp. 1879-1887 ◽  
Author(s):  
Jonathan S. Fenn ◽  
Ridvan Nepravishta ◽  
Collette S. Guy ◽  
James Harrison ◽  
Jesus Angulo ◽  
...  

2014 ◽  
Vol 106 (2) ◽  
pp. 99a
Author(s):  
Stefano Vanni ◽  
Joachim Moser von Filseck ◽  
Bruno Mesmin ◽  
Bruno Antonny ◽  
Guillaume Drin

Author(s):  
Marianna Teplova ◽  
Thalia A. Farazi ◽  
Thomas Tuschl ◽  
Dinshaw J. Patel

AbstractRNA-binding protein with multiple splicing (designated RBPMS) is a higher vertebrate mRNA-binding protein containing a single RNA recognition motif (RRM). RBPMS has been shown to be involved in mRNA transport, localization and stability, with key roles in axon guidance, smooth muscle plasticity, as well as regulation of cancer cell proliferation and migration. We report on structure-function studies of the RRM domain of RBPMS bound to a CAC-containing single-stranded RNA. These results provide insights into potential topologies of complexes formed by the RBPMS RRM domain and the tandem CAC repeat binding sites as detected by photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. These studies establish that the RRM domain of RBPMS forms a symmetrical dimer in the free state, with each monomer binding sequence-specifically to all three nucleotides of a CAC segment in the RNA bound state. Structure-guided mutations within the dimerization and RNA-binding interfaces of RBPMS RRM on RNA complex formation resulted in both disruption of dimerization and a decrease in RNA-binding affinity as observed by size exclusion chromatography and isothermal titration calorimetry. As anticipated from biochemical binding studies, over-expression of dimerization or RNA-binding mutants of Flag-HA-tagged RBPMS were no longer able to track with stress granules in HEK293 cells, thereby documenting the deleterious effects of such mutations in vivo.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Ilaria Peschiera ◽  
Maria Giuliani ◽  
Fabiola Giusti ◽  
Roberto Melero ◽  
Eugenio Paccagnini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document