Micropropagation through excised root culture of Clitoria ternatea and comparison between in vitro?regenerated plants and seedlings

2007 ◽  
Vol 150 (3) ◽  
pp. 341-349 ◽  
Author(s):  
A. Shahzad ◽  
M. Faisal ◽  
M. Anis
2018 ◽  
Vol 22 ◽  
pp. 216-221
Author(s):  
O. V. Bulko ◽  
L. G. Lioshina

Aim. Micropropagation of Jacob’s ladder Polemonium caeruleum L. and black salsify Scorzonera hispanica L., obtaining root culture and regenerated plants. Methods. In vitro plant cultivation, medium composition modification for micropropagation, inoculation of explants with agrobacterial strains. Results. In vitro cultures of Jacob’s ladder and black salsify have been obtained, the optimal medium composition has been determined for the effective plants multiplication, rooting and growth, root cultures and regenerated plants of studied species have been obtained. Conclusions. Obtained technology of in vitro culture establishment of P. caeruleum and S. hispanica can be used for plants microclonal propagation so as root culture and regenerated plants acquiring due to the agrobacterial transformation – for further studies of secondary metabolism of these plants. Keywords: P. caeruleum L., S. hispanica L., micropropagation, phytohormones, root culture.


2019 ◽  
pp. 57-67
Author(s):  
T.M. Tabatskaya ◽  
N.I. Vnukova

A technique for the long-term (up to 27 years) in vitro storage of valuable birch genotypes under normal (25 °C, 2.0 klx, 16-h day and 8-h night) and low temperature (4 °C, 0.5 klx, 6-h day and 18-h night) growing conditions on hormone-free media has been described. The study explored for the first time the influence of different strategies to store the clones of Betula pubescens and B. pendula var. сarelica (6 genotypes) on the regenerative capacity of collection samples, adaptive potential of regenerated plants and plant production by the in vitro and ex vitro techniques. It was established that both storage strategies provided a persistently high survival rate (82-100%) and regenerative capacity of in vitro shoots (the multiplication coefficient of 4.2-6.3 and rhizogenic activity of 90-100%). The clones retained their characteristics of height growth under the in vitro and ex vitro conditions, and demonstrated intraclonal homogeneity and lack of signs of somaclonal variability. The plants showed substantial interspecific differences at the stage of multiplication and transfer to the greenhouse. The highest percentage of acclimated plants (75-98% depending on the clone genotype) was obtained after planting of micro plants straight in the greenhouse, which simplified the technology and made plant production less costly. long-term in vitro storage, birch, species, genotype, micropropagation, ex vitro adaptation, plant material


Author(s):  
Asmaa Abdelsalam ◽  
Ehab Mahran ◽  
Kamal Chowdhury ◽  
Arezue Boroujerdi

Abstract Background Anarrhinum pubescens Fresen. (Plantaginaceae) is a rare plant, endemic to the Saint Catherine area, of South Sinai, Egypt. Earlier studies have reported the isolation of cytotoxic and anti-cholinesterase iridoid glucosides from the aerial parts of the plant. The present study aimed to investigate the chemical profiling of the wild plant shoots as well as establish efficient protocols for in vitro plant regeneration and proliferation with further assessment of the genetic stability of the in vitro regenerated plants. Results Twenty-seven metabolites have been identified in wild plant shoots using the Nuclear Magnetic Resonance (NMR) spectroscopy. The metabolites include alkaloids, amino acids, carbohydrates, organic acids, vitamins, and a phenol. In vitro propagation of the plant was carried out through nodal cutting-micropropagation and leaf segment-direct organogenesis. The best results were obtained when nodal cutting explants were cultured on Murashige and Skoog medium with Gamborg B5 vitamins supplemented with 6-benzylaminopurine (BAP) (1.0 mg/L) and naphthaleneacetic acid (NAA) (0.05 mg/L), which gave a shoot formation capacity of 100% and a mean number of shoots of 27.67 ± 1.4/explant. These shoots were successfully rooted and transferred to the greenhouse and the survival rate was 75%. Genetic fidelity evaluation of the micropropagated clones was carried out using random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) molecular markers. Jaccard’s similarity coefficient indicated a similarity as high as 98% and 95% from RAPD and ISSR markers, respectively. Conclusions This study provides the chemical profiling of the aerial part of Anarrhinum pubescens. Moreover, in vitro regeneration through different tissue culture techniques has been established for mass propagation of the plant, and the genetic fidelity of the in vitro regenerated plants was confirmed as well. Our work on the in vitro propagation of A. pubescens will be helpful in ex situ conservation and identification of bioactive metabolites.


2021 ◽  
Vol 8 (02) ◽  
pp. e62-e68
Author(s):  
Jeeta Sarkar ◽  
Nirmalya Banerjee

AbstractSteroid alkaloid solasodine is a nitrogen analogue of diosgenin and has great importance in the production of steroidal medicines. Solanum erianthum D. Don (Solanaceae) is a good source of solasodine. The aim of this study was to evaluate the effect of different cytokinins on the production of secondary metabolites, especially solasodine in the in vitro culture of S. erianthum. For solasodine estimation, field-grown plant parts and in vitro tissues were extracted thrice and subjected to high-performance liquid Chromatography. Quantitative analysis of different secondary metabolites showed that the amount was higher in the in vitro regenerated plantlets compared to callus and field-grown plants. The present study critically evaluates the effect of the type of cytokinin used in the culture medium on solasodine accumulation in regenerated plants. The highest solasodine content (46.78±3.23 mg g-1) was recorded in leaf extracts of the in vitro grown plantlets in the presence of 6-γ,γ-dimethylallylamino purine in the culture medium and the content was 3.8-fold higher compared to the mother plant.


Plant Science ◽  
1993 ◽  
Vol 91 (2) ◽  
pp. 223-229 ◽  
Author(s):  
A. Cavallini ◽  
L. Natali ◽  
G. Cionini ◽  
O. Sassoli ◽  
I. Castorena-Sanchez

2009 ◽  
Vol 8 (21) ◽  
pp. 5952-5957 ◽  
Author(s):  
M Khalafalla M ◽  
M Daffalla H ◽  
A El Shemy H ◽  
Abdellatef E

Author(s):  
Ravi Shankar Singh ◽  
Tirthartha Chattopadhyay ◽  
Dharamsheela Thakur ◽  
Nitish Kumar ◽  
Tribhuwan Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document