DEVELOPMENT AND EVALUATION OF A RAPID ENZYME-LINKED IMMUNOFILTRATION ASSAY (ELIFA) AND AN ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) FOR THE DETECTION OF STAPHYLOCOCCAL ENTEROTOXIN B

1996 ◽  
Vol 4 (4) ◽  
pp. 285-295 ◽  
Author(s):  
ALFONSO VALDIVIESO-GARCIA ◽  
OM SURUJBALLI ◽  
KAMAL D. HABIB ◽  
OMAR ABUBAKAR ◽  
BRIAN W. BROOKS
2007 ◽  
Vol 14 (9) ◽  
pp. 1094-1101 ◽  
Author(s):  
E. Cook ◽  
X. Wang ◽  
N. Robiou ◽  
B. C. Fries

ABSTRACT Staphylococcal enterotoxin B (SEB) is a select agent because it is a potent mitogen that elicits life-threatening polyclonal T-cell proliferation and cytokine production at very low concentrations. Efforts are in progress to develop therapeutic reagents and vaccines that neutralize or prevent the devastating effects of this toxin. Because of its rapid binding to in vivo receptors, this toxin is difficult to detect in serum. This rapid binding also constitutes a major challenge for the development of effective therapeutic reagents that can neutralize the effects of the toxin in vivo. We have developed a highly sensitive capture enzyme-linked immunosorbent assay that detects SEB in body fluids at very low levels. With this assay, the peak levels of SEB in serum and renal clearance can be measured in mice. After either oral ingestion or nasal inhalation of SEB by mice, this assay documents the transcytosis of SEB across the mucosal membranes into serum within 2 h. Furthermore, this assay was used to compare the SEB levels in different murine models for SEB-induced lethal shock and demonstrated that the coadministration of toxin-enhancing chemicals, such as d-galactosamine and lipopolysaccharide, can alter the peak serum SEB levels. Hence, this assay is a potentially useful tool for the study of the pharmacokinetics of SEB and the effects of potential therapeutic reagents on serum SEB levels.


2009 ◽  
Vol 72 (10) ◽  
pp. 2212-2216 ◽  
Author(s):  
MARYANN PRINCIPATO ◽  
THOMAS BOYLE ◽  
JOYCE NJOROGE ◽  
ROBERT L. JONES ◽  
MICHAEL O'DONNELL

This research was conducted to examine the inherent properties of yogurt contaminated with staphylococcal enterotoxin B (SEB). Two types of yogurts were produced for this study. Type I yogurts were produced by adding SEB at the start of yogurt production, and type II yogurts were produced by adding SEB after the milk base had been boiled. Biochemical characteristics inherent to yogurt, including pH, lactic acid and acetaldehyde concentrations, were analyzed weekly for each batch beginning at a time just after production and throughout a storage period of at least 4 weeks. The presence of toxin during yogurt production did not result in any significant biochemical or physical changes in yogurt. However, we were unable to detect SEB toxin in type I yogurt using a commercially available enzyme-linked immunosorbent assay (ELISA). In contrast, SEB was easily detectable by our ELISA in type II yogurt samples. Higher levels of SEB were recovered from type II yogurt that had been stored for 1 week than from type II yogurt that had been stored for any other length of time. These results indicate that the biochemical characteristics of yogurt did not change significantly (relative to control yogurt) in the presence of either thermally processed SEB or native SEB. However, the ability to detect SEB by ELISA was dependent on whether the toxin had been processed.


2010 ◽  
Vol 76 (24) ◽  
pp. 8184-8191 ◽  
Author(s):  
Pawan Kumar Singh ◽  
Ranu Agrawal ◽  
Dev Vrat Kamboj ◽  
Garima Gupta ◽  
M. Boopathi ◽  
...  

ABSTRACT Staphylococcal food poisoning (SFP) is one of the most prevalent causes of food-borne illness throughout the world. SFP is caused by 21 different types of staphylococcal enterotoxins produced by Staphylococcus aureus. Among these, staphylococcal enterotoxin B (SEB) is the most potent toxin and is a listed biological warfare (BW) agent. Therefore, development of immunological reagents for detection of SEB is of the utmost importance. High-affinity and specific monoclonal antibodies are being used for detection of SEB, but hybridoma clones tend to lose their antibody-secreting ability over time. This problem can be overcome by the use of recombinant antibodies produced in a bacterial system. In the present investigation, genes from a hybridoma clone encoding monoclonal antibody against SEB were immortalized using antibody phage display technology. A murine phage display library containing single-chain variable-fragment (ScFv) antibody genes was constructed in a pCANTAB 5E phagemid vector. Phage particles displaying ScFv were rescued by reinfection of helper phage followed by four rounds of biopanning for selection of SEB binding ScFv antibody fragments by using phage enzyme-linked immunosorbent assay (ELISA). Soluble SEB-ScFv antibodies were characterized from one of the clones showing high affinity for SEB. The anti-SEB ScFv antibody was highly specific, and its affinity constant was 3.16 nM as determined by surface plasmon resonance (SPR). These results demonstrate that the recombinant antibody constructed by immortalizing the antibody genes from a hybridoma clone is useful for immunodetection of SEB.


2016 ◽  
Vol 23 (12) ◽  
pp. 918-925 ◽  
Author(s):  
Wilbur H. Chen ◽  
Marcela F. Pasetti ◽  
Rajan P. Adhikari ◽  
Holly Baughman ◽  
Robin Douglas ◽  
...  

ABSTRACTStaphylococcus aureusproduces several enterotoxins and superantigens, exposure to which can elicit profound toxic shock. A recombinant staphylococcal enterotoxin B (rSEB) containing 3 distinct mutations in the major histocompatibility complex class II binding site was combined with an alum adjuvant (Alhydrogel) and used as a potential parenteral vaccine named STEBVax. Consenting healthy adult volunteers (age range, 23 to 38 years) participated in a first-in-human open-label dose escalation study of parenteral doses of STEBVax ranging from 0.01 μg up to 20 μg. Safety was assessed by determination of the frequency of adverse events and reactogenicity. Immune responses to the vaccination were determined by measurement of anti-staphylococcal enterotoxin B (anti-SEB) IgG by enzyme-linked immunosorbent assay and a toxin neutralization assay (TNA). Twenty-eight participants were enrolled in 7 dosing cohorts. All doses were well tolerated. The participants exhibited heterogeneous baseline antibody titers. More seroconversions and a faster onset of serum anti-SEB IgG toxin-neutralizing antibodies were observed by TNA with increasing doses of STEBVax. There was a trend for a plateau in antibody responses with doses of STEBVax of between 2.5 and 20 μg. Among the participants vaccinated with 2.5 μg to 20 μg of STEBVax, ∼93% seroconverted for SEB toxin-neutralizing antibody. A strong correlation between individual SEB-specific serum IgG antibody titers and the neutralization of gamma interferon production was foundin vitro. STEBvax appeared to be safe and immunogenic, inducing functional toxin-neutralizing antibodies. These data support its continued clinical development. (This study has been registered at ClinicalTrials.gov under registration no. NCT00974935.)


2010 ◽  
Vol 17 (11) ◽  
pp. 1708-1717 ◽  
Author(s):  
Yuji Urushibata ◽  
Kunihiko Itoh ◽  
Motohiro Ohshima ◽  
Yasuo Seto

ABSTRACT Antigen-binding fragments (Fab fragments) and single-chain variable fragments (scFv) against staphylococcal enterotoxin B (SEB) were produced by phage display technology. SEB epitopes were first identified by phage display approach using the commercial anti-SEB monoclonal antibody ab53981 as the target. Heptamer and dodecamer mimotope peptides recognized by ab53981 were screened from Ph.D-7 or Ph.D-12 random peptide phage libraries expressed in Escherichia coli. The isolated 7-mer and 12-mer mimotopes were shown to share a sequence homologous to 8PDELHK14S in the amino acid sequence of SEB. The N-terminal 15-mer peptide of SEB was determined to be an epitope of ab53981. After immunization of mice with maltose-binding protein-tagged N-terminal 15-mer peptide, a phage display Fab library was constructed using cDNA prepared from the mRNAs of spleen cells. Three phage clones displaying the Fab molecule which recognized SEB were isolated through three rounds of panning. Only one of them produced a soluble Fab fragment from the transformed cells, and the fragment fused with a histidine tag sequence was produced in E. coli cells and converted into scFv. Surface plasmon resonance analysis showed that the dissociation constants of these proteins with SEB were (4.1 ± 1.1) × 10−9 M and (8.4 ± 2.3) × 10−10 M, respectively. The produced molecule was applied to the determination of SEB by enzyme-linked immunosorbent assay and Western blot analysis.


Sign in / Sign up

Export Citation Format

Share Document