Global climate change is confounding species conservation strategies

2012 ◽  
Vol 7 (2) ◽  
pp. 158-164 ◽  
Author(s):  
Harold KOOPOWITZ ◽  
Bradford A. HAWKINS
2014 ◽  
Vol 60 (2) ◽  
pp. 221-232 ◽  
Author(s):  
Leonard Sandin ◽  
Astrid Schmidt-Kloiber ◽  
Jens-Christian Svenning ◽  
Erik Jeppesen ◽  
Nikolai Friberg

Abstract Freshwater habitats and organisms are among the most threatened on Earth, and freshwater ecosystems have been subject to large biodiversity losses. We developed a Climate Change Sensitivity (CCS) indicator based on trait information for a selection of stream- and lake-dwelling Ephemeroptera, Plecoptera and Trichoptera taxa. We calculated the CCS scores based on ten species traits identified as sensitive to global climate change. We then assessed climate change sensitivity between the six main ecoregions of Sweden as well as the three Swedish regions based on Illies. This was done using biological data from 1, 382 stream and lake sites where we compared large-scale (ecoregional) patterns in climate change sensitivity with potential future exposure of these ecosystems to increased temperatures using ensemble-modelled future changes in air temperature. Current (1961~1990) measured temperature and ensemble-modelled future (2100) temperature showed an increase from the northernmost towards the southern ecoregions, whereas the predicted temperature change increased from south to north. The CCS indicator scores were highest in the two northernmost boreal ecoregions where we also can expect the largest global climate change-induced increase in temperature, indicating an unfortunate congruence of exposure and sensitivity to climate change. These results are of vital importance when planning and implementing management and conservation strategies in freshwater ecosystems, e.g., to mitigate increased temperatures using riparian buffer strips. We conclude that traits information on taxa specialization, e.g., in terms of feeding specialism or taxa having a preference for high altitudes as well as sensitivity to changes in temperature are important when assessing the risk from future global climate change to freshwater ecosystems.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1520
Author(s):  
Jin-Hong Zhang ◽  
Kun-Ji Li ◽  
Xiao-Fei Liu ◽  
Liu Yang ◽  
Shi-Kang Shen

Rapid temperature changes in mountain ecosystems pose a great threat to alpine plant species and communities. Rhododendron species, as the major component of alpine and sub-alpine vegetation, have been demonstrated to be sensitive to climate changes. Therefore, understanding how alpine Rhododendron species spread to new habitats and how their geographical distribution range shifts is crucial for predicting their response to global climate change and for facilitating species conservation and reintroduction. In this study, we applied MaxEnt modeling and integrated climate, topography, and soil variables in three periods under three climate change scenarios to predict the suitable habitat for four Rhododendron species in China. We measured the potential distribution change in each species using the change ratio and the direction of centroid shifts. The predicted results showed that (1) the threatened species R. protistum would have a maximum decrease of 85.84% in its distribution range in the 2070s under RCP 8.5, and R. rex subsp. rex as a threatened species would experience a distribution range expansion (6.62–43.10%) under all of the three climate change scenarios in the 2070s. (2) R. praestans would experience a reduction in its distribution range (7.82–28.34%) under all of the three climate change scenarios in the 2070s. (3) The four Rhododendron species would be moved to high latitudes in the north-westward direction as a whole in the future, especially the two threatened species R. protistum and R. rex subsp. rex. (4) Aside from climate variables, soil factors also exert an important influence on the distribution of Rhododendron species. This study revealed the species-specific response of Rhododendron species to climate change. The results can not only provide novel insights into conservation strategies of Rhododendron species, but also propose a valuable method for the habitat selection during the reintroduction of endangered species.


2009 ◽  
Author(s):  
Marci Culley ◽  
Holly Angelique ◽  
Courte Voorhees ◽  
Brian John Bishop ◽  
Peta Louise Dzidic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document