scholarly journals Interspecific Variance of Suitable Habitat Changes for Four Alpine Rhododendron Species under Climate Change: Implications for Their Reintroductions

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1520
Author(s):  
Jin-Hong Zhang ◽  
Kun-Ji Li ◽  
Xiao-Fei Liu ◽  
Liu Yang ◽  
Shi-Kang Shen

Rapid temperature changes in mountain ecosystems pose a great threat to alpine plant species and communities. Rhododendron species, as the major component of alpine and sub-alpine vegetation, have been demonstrated to be sensitive to climate changes. Therefore, understanding how alpine Rhododendron species spread to new habitats and how their geographical distribution range shifts is crucial for predicting their response to global climate change and for facilitating species conservation and reintroduction. In this study, we applied MaxEnt modeling and integrated climate, topography, and soil variables in three periods under three climate change scenarios to predict the suitable habitat for four Rhododendron species in China. We measured the potential distribution change in each species using the change ratio and the direction of centroid shifts. The predicted results showed that (1) the threatened species R. protistum would have a maximum decrease of 85.84% in its distribution range in the 2070s under RCP 8.5, and R. rex subsp. rex as a threatened species would experience a distribution range expansion (6.62–43.10%) under all of the three climate change scenarios in the 2070s. (2) R. praestans would experience a reduction in its distribution range (7.82–28.34%) under all of the three climate change scenarios in the 2070s. (3) The four Rhododendron species would be moved to high latitudes in the north-westward direction as a whole in the future, especially the two threatened species R. protistum and R. rex subsp. rex. (4) Aside from climate variables, soil factors also exert an important influence on the distribution of Rhododendron species. This study revealed the species-specific response of Rhododendron species to climate change. The results can not only provide novel insights into conservation strategies of Rhododendron species, but also propose a valuable method for the habitat selection during the reintroduction of endangered species.

2021 ◽  
Vol 22 (3) ◽  
pp. 1357
Author(s):  
Ewelina A. Klupczyńska ◽  
Tomasz A. Pawłowski

Environmental conditions are the basis of plant reproduction and are the critical factors controlling seed dormancy and germination. Global climate change is currently affecting environmental conditions and changing the reproduction of plants from seeds. Disturbances in germination will cause disturbances in the diversity of plant communities. Models developed for climate change scenarios show that some species will face a significant decrease in suitable habitat area. Dormancy is an adaptive mechanism that affects the probability of survival of a species. The ability of seeds of many plant species to survive until dormancy recedes and meet the requirements for germination is an adaptive strategy that can act as a buffer against the negative effects of environmental heterogeneity. The influence of temperature and humidity on seed dormancy status underlines the need to understand how changing environmental conditions will affect seed germination patterns. Knowledge of these processes is important for understanding plant evolution and adaptation to changes in the habitat. The network of genes controlling seed dormancy under the influence of environmental conditions is not fully characterized. Integrating research techniques from different disciplines of biology could aid understanding of the mechanisms of the processes controlling seed germination. Transcriptomics, proteomics, epigenetics, and other fields provide researchers with new opportunities to understand the many processes of plant life. This paper focuses on presenting the adaptation mechanism of seed dormancy and germination to the various environments, with emphasis on their prospective roles in adaptation to the changing climate.


Author(s):  
Ren-Yan Duan ◽  
Xiao-Quan Kong ◽  
Min-Yi Huang ◽  
Sara Varela ◽  
Xiang Ji

Many studies predict that climate change will cause species movement and turnover, but few studies have considered the effect of climate change on range fragmentation for current species and/or populations. We used MaxEnt to predict suitable habitat, fragmentation and turnover for 134 amphibian species in China under 40 future climate change scenarios spanning four pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5) and two time periods (the 2050s and 2070s). Our results show that climate change will cause a major shift in the spatial patterns of amphibian diversity. Suitable habitats for over 90% of species will be located in the north of the current range, for over 95% of species in higher altitudes, and for over 75% of species in the west of the current range. The distributions of species predicted to move westwards, southwards and to higher altitudes will contract, while the ranges of the species not showing these trends will expand. Amphibians will lose 20% of their original ranges on average; the distribution outside current ranges will increase by 15%. Climate change will likely modify the spatial configuration of climatically suitable areas. Changes in area and fragmentation of climatically suitable patches are related, which means that species may be simultaneously affected by different stressors as a consequence of climate change.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2185 ◽  
Author(s):  
Ren-Yan Duan ◽  
Xiao-Quan Kong ◽  
Min-Yi Huang ◽  
Sara Varela ◽  
Xiang Ji

Many studies predict that climate change will cause species movement and turnover, but few have considered the effect of climate change on range fragmentation for current species and/or populations. We used MaxEnt to predict suitable habitat, fragmentation and turnover for 134 amphibian species in China under 40 future climate change scenarios spanning four pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5) and two time periods (the 2050s and 2070s). Our results show that climate change may cause a major shift in spatial patterns of amphibian diversity. Amphibians in China would lose 20% of their original ranges on average; the distribution outside current ranges would increase by 15%. Suitable habitats for over 90% of species will be located in the north of their current range, for over 95% of species in higher altitudes (from currently 137–4,124 m to 286–4,396 m in the 2050s or 314–4,448 m in the 2070s), and for over 75% of species in the west of their current range. Also, our results predict two different general responses to the climate change: some species contract their ranges while moving westwards, southwards and to higher altitudes, while others expand their ranges. Finally, our analyses indicate that range dynamics and fragmentation are related, which means that the effects of climate change on Chinese amphibians might be two-folded.


Author(s):  
Ren-Yan Duan ◽  
Xiao-Quan Kong ◽  
Min-Yi Huang ◽  
Sara Varela ◽  
Xiang Ji

Many studies predict that climate change will cause species movement and turnover, but few studies have considered the effect of climate change on range fragmentation for current species and/or populations. We used MaxEnt to predict suitable habitat, fragmentation and turnover for 134 amphibian species in China under 40 future climate change scenarios spanning four pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5) and two time periods (the 2050s and 2070s). Our results show that climate change will cause a major shift in the spatial patterns of amphibian diversity. Suitable habitats for over 90% of species will be located in the north of the current range, for over 95% of species in higher altitudes, and for over 75% of species in the west of the current range. The distributions of species predicted to move westwards, southwards and to higher altitudes will contract, while the ranges of the species not showing these trends will expand. Amphibians will lose 20% of their original ranges on average; the distribution outside current ranges will increase by 15%. Climate change will likely modify the spatial configuration of climatically suitable areas. Changes in area and fragmentation of climatically suitable patches are related, which means that species may be simultaneously affected by different stressors as a consequence of climate change.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jun Yang ◽  
Maigeng Zhou ◽  
Zhoupeng Ren ◽  
Mengmeng Li ◽  
Boguang Wang ◽  
...  

AbstractRecent studies have reported a variety of health consequences of climate change. However, the vulnerability of individuals and cities to climate change remains to be evaluated. We project the excess cause-, age-, region-, and education-specific mortality attributable to future high temperatures in 161 Chinese districts/counties using 28 global climate models (GCMs) under two representative concentration pathways (RCPs). To assess the influence of population ageing on the projection of future heat-related mortality, we further project the age-specific effect estimates under five shared socioeconomic pathways (SSPs). Heat-related excess mortality is projected to increase from 1.9% (95% eCI: 0.2–3.3%) in the 2010s to 2.4% (0.4–4.1%) in the 2030 s and 5.5% (0.5–9.9%) in the 2090 s under RCP8.5, with corresponding relative changes of 0.5% (0.0–1.2%) and 3.6% (−0.5–7.5%). The projected slopes are steeper in southern, eastern, central and northern China. People with cardiorespiratory diseases, females, the elderly and those with low educational attainment could be more affected. Population ageing amplifies future heat-related excess deaths 2.3- to 5.8-fold under different SSPs, particularly for the northeast region. Our findings can help guide public health responses to ameliorate the risk of climate change.


Author(s):  
Partha Sarathi Datta

In many parts of the world, freshwater crisis is largely due to increasing water consumption and pollution by rapidly growing population and aspirations for economic development, but, ascribed usually to the climate. However, limited understanding and knowledge gaps in the factors controlling climate and uncertainties in the climate models are unable to assess the probable impacts on water availability in tropical regions. In this context, review of ensemble models on δ18O and δD in rainfall and groundwater, 3H- and 14C- ages of groundwater and 14C- age of lakes sediments helped to reconstruct palaeoclimate and long-term recharge in the North-west India; and predict future groundwater challenge. The annual mean temperature trend indicates both warming/cooling in different parts of India in the past and during 1901–2010. Neither the GCMs (Global Climate Models) nor the observational record indicates any significant change/increase in temperature and rainfall over the last century, and climate change during the last 1200 yrs BP. In much of the North-West region, deep groundwater renewal occurred from past humid climate, and shallow groundwater renewal from limited modern recharge over the past decades. To make water management to be more responsive to climate change, the gaps in the science of climate change need to be bridged.


2014 ◽  
Vol 60 (2) ◽  
pp. 221-232 ◽  
Author(s):  
Leonard Sandin ◽  
Astrid Schmidt-Kloiber ◽  
Jens-Christian Svenning ◽  
Erik Jeppesen ◽  
Nikolai Friberg

Abstract Freshwater habitats and organisms are among the most threatened on Earth, and freshwater ecosystems have been subject to large biodiversity losses. We developed a Climate Change Sensitivity (CCS) indicator based on trait information for a selection of stream- and lake-dwelling Ephemeroptera, Plecoptera and Trichoptera taxa. We calculated the CCS scores based on ten species traits identified as sensitive to global climate change. We then assessed climate change sensitivity between the six main ecoregions of Sweden as well as the three Swedish regions based on Illies. This was done using biological data from 1, 382 stream and lake sites where we compared large-scale (ecoregional) patterns in climate change sensitivity with potential future exposure of these ecosystems to increased temperatures using ensemble-modelled future changes in air temperature. Current (1961~1990) measured temperature and ensemble-modelled future (2100) temperature showed an increase from the northernmost towards the southern ecoregions, whereas the predicted temperature change increased from south to north. The CCS indicator scores were highest in the two northernmost boreal ecoregions where we also can expect the largest global climate change-induced increase in temperature, indicating an unfortunate congruence of exposure and sensitivity to climate change. These results are of vital importance when planning and implementing management and conservation strategies in freshwater ecosystems, e.g., to mitigate increased temperatures using riparian buffer strips. We conclude that traits information on taxa specialization, e.g., in terms of feeding specialism or taxa having a preference for high altitudes as well as sensitivity to changes in temperature are important when assessing the risk from future global climate change to freshwater ecosystems.


Sign in / Sign up

Export Citation Format

Share Document