Ring Chromosome 21: Characterization of DNA Sequences at Sites of Breakage and Reunion

1985 ◽  
Vol 450 (1 Molecular org) ◽  
pp. 33-42 ◽  
Author(s):  
HAIG H. KAZAZIAN ◽  
STYLIANOS E. ANTONARAKIS ◽  
CORINNE WONG ◽  
STEPHEN P. TRUSKO ◽  
GAIL STETTEN ◽  
...  
2008 ◽  
Vol 48 (4) ◽  
pp. 188-191 ◽  
Author(s):  
Robert A. Conte ◽  
Sunny Luke ◽  
Ram S. Verma

2021 ◽  
Vol 60 (1) ◽  
pp. 157-160
Author(s):  
Chih-Ping Chen ◽  
Liang-Kai Wang ◽  
Schu-Rern Chern ◽  
Peih-Shan Wu ◽  
Shin-Wen Chen ◽  
...  

2007 ◽  
Vol 408 (3) ◽  
pp. 395-406 ◽  
Author(s):  
Marta Manzoni ◽  
Paolo Colombi ◽  
Nadia Papini ◽  
Luana Rubaga ◽  
Natascia Tiso ◽  
...  

Sialidases remove sialic acid residues from various sialo-derivatives. To gain further insights into the biological roles of sialidases in vertebrates, we exploited zebrafish (Danio rerio) as an animal model. A zebrafish transcriptome- and genome-wide search using the sequences of the human NEU polypeptides as templates revealed the presence of seven different genes related to human sialidases. neu1 and neu4 are the putative orthologues of the mammalian sialidases NEU1 and NEU4 respectively. Interestingly, the remaining genes are organized in clusters located on chromosome 21 and are all more closely related to mammalian sialidase NEU3. They were thus named neu3.1, neu3.2, neu3.3, neu3.4 and neu3.5. Using RT–PCR (reverse transcription–PCR) we detected transcripts for all genes, apart from neu3.4, and whole-mount in situ hybridization experiments show a localized expression pattern in gut and lens for neu3.1 and neu4 respectively. Transfection experiments in COS7 (monkey kidney) cells demonstrate that Neu3.1, Neu3.2, Neu3.3 and Neu4 zebrafish proteins are sialidase enzymes. Neu3.1, Neu3.3 and Neu4 are membrane-associated and show a very acidic pH optimum below 3.0, whereas Neu3.2 is a soluble sialidase with a pH optimum of 5.6. These results were further confirmed by subcellular localization studies carried out using immunofluorescence. Moreover, expression in COS7 cells of these novel zebrafish sialidases (with the exception of Neu3.2) induces a significant modification of the ganglioside pattern, consistent with the results obtained with membrane-associated mammalian sialidases. Overall, the redundancy of sialidases together with their expression profile and their activity exerted on gangliosides of living cells indicate the biological relevance of this class of enzymes in zebrafish.


1987 ◽  
Vol 13 (6) ◽  
pp. 609-619 ◽  
Author(s):  
A. V. Gudkov ◽  
O. B. Chernova ◽  
A. R. Kazarov ◽  
B. P. Kopnin

1991 ◽  
Vol 10 (4) ◽  
pp. 301-310 ◽  
Author(s):  
M. BELLIS ◽  
A. GÉRARD ◽  
J.P. CHARLIEU ◽  
B. MARÇAIS ◽  
M.E. BRUN ◽  
...  

1987 ◽  
Vol 7 (5) ◽  
pp. 1776-1781
Author(s):  
M Fukui ◽  
T Yamamoto ◽  
S Kawai ◽  
F Mitsunobu ◽  
K Toyoshima

Results of previous studies have shown that a raf-related transforming DNA sequence is present in NIH 3T3 transformants that are derived from GL-5-JCK human glioblastoma DNA transfection. The transforming DNA was molecularly cloned by using cosmid vector pJB8 to determine its structure and origin. Analyses of selected clones revealed that the transforming DNA consisted of three portions of human DNA sequences, with the 3' half of the c-raf-1 gene as its middle portion. This raf region was about 20 kilobases long and contained exons 8 to 17 and the poly(A) addition site. RNA blot analysis showed that the raf-related transforming DNA was transcribed into 5.3-, 4.8-, and 2.5-kilobase mRNAs; the 2.5-kilobase transcript was thought to be the major transcript. Immunoprecipitation analyses revealed that a 44-kilodalton raf-related protein was specifically expressed in the NIH 3T3 transformants. The raf-related transforming DNA was considered to be activated when its amino-terminal sequence was truncated and the DNA was coupled with a foreign promoter sequence. On hybridization analysis of the original GL-5-JCK glioblastoma DNA, no rearrangement of c-raf-1 was detectable in the tumor DNA. The rearrangement of c-raf-1 may have occurred during transfection or may have been present in a small population of the original tumor cells as a result of tumor progression.


Sign in / Sign up

Export Citation Format

Share Document