Role of Endothelial Cell Surface Heparin-like Polysaccharides

1989 ◽  
Vol 556 (1 Heparin and R) ◽  
pp. 81-94 ◽  
Author(s):  
JAMES A. MARCUM ◽  
ROBERT D. ROSENBERG
2019 ◽  
Vol 316 (3) ◽  
pp. H647-H663 ◽  
Author(s):  
Mohamed M. Ali ◽  
Abeer M. Mahmoud ◽  
Elizabeth Le Master ◽  
Irena Levitan ◽  
Shane A. Phillips

The glycocalyx is crucial for normal endothelial function. It also tethers extracellular superoxide dismutase (SOD3), which protects the endothelium against oxidative damage. Proteolytic enzymes [matrix metalloproteinases (MMPs)] are capable of disrupting endothelial cell surface proteins, such as syndecans, resulting in derangements of the endothelial glycocalyx. We sought to test the role of MMPs in oxidative stress-mediated disruption of the endothelial glycocalyx and examine the effect of pharmacological inhibition of MMPs on mitigating this detrimental effect. We also examined the role of histone deacetylase (HDAC) in the oxidative stress-mediated MMP induction and glycocalyx remodeling. Oxidative stress was experimentally induced in human adipose microvascular endothelial cells using H2O2 and buthionine sulfoximine in the presence and absence of potent MMP and HDAC inhibitors. H2O2 and buthionine sulfoximine resulted in a notable loss of the endothelial glycocalyx; they also increased the expression and proteolytic activity of MMP-2 and MMP-9 and subsequently increased the shedding of syndecan-1 and SOD3 from the endothelial cell surface. MMP upregulation was accompanied by a decline in mRNA and protein levels of their inhibitors, tissue inhibitors of metalloproteinase (TIMPs; TIMP-1 and TIMP-3). Furthermore, oxidative stress induced HDAC activity. Inhibition of MMPs and HDAC reversed syndecan-1 and SOD3 shedding and maintained endothelial glycocalyx integrity. HDAC inhibition increased TIMP expression and reduced MMP expression and activity in endothelial cells. Our findings shed light on MMPs and HDAC as therapeutically targetable mechanisms in oxidative stress-induced glycocalyx remodeling. NEW & NOTEWORTHY Oxidative stress, a hallmark of many diseases, damages the endothelial glycocalyx, resulting in vascular dysfunction. Studying the mechanistic link between oxidative stress and endothelial glycocalyx derangements might help discover new therapeutic targets to preserve vascular function. In this study, we investigated the involvement of matrix metalloproteinases and histone deacetylase in oxidative stress-induced endothelial glycocalyx degradation.


1984 ◽  
Vol 99 (2) ◽  
pp. 639-647 ◽  
Author(s):  
L Ghitescu ◽  
A Fixman

The topography of the charged residues on the endothelial cell surface of liver sinusoid capillaries was investigated by using electron microscopic tracers of different size and charge. The tracers used were native ferritin (pl 4.2-4.7) and its cationized (pl 8.4) and anionized (pl 3.7) derivatives, BSA coupled to colloidal gold (pl of the complex 5.1), hemeundecapeptide (pl 4.85), and alcian blue (pl greater than 10). The tracers were either injected in vivo or perfused in situ through the portal vein of the mouse liver. In some experiments, two tracers of opposite charge were sequentially perfused with extensive washing in between. The liver was processed for electron microscopy and the binding pattern of the injected markers was recorded. The electrostatic nature of the tracer binding was assessed by perfusion with high ionic strength solutions, by aldehyde quenching of the plasma membrane basic residues, and by substituting the cell surface acidic moieties with positively charged groups. Results indicate that the endothelial cells of the liver sinusoids expose on their surface both cationic and anionic residues. The density distribution of these charged groups on the cell surface is different. While the negative charge is randomly and patchily scattered all over the membrane, the cationic residues seem to be accumulated in coated pits. The charged groups co-exist in the same coated pit and bind the opposite charged macromolecule. It appears that the fixed positive and negative charges of the coated pit glycocalyx are mainly segregated in space. The layer of basic residues is located at 20-30-nm distance of the membrane, while most of the negative charges lie close to the external leaflet of the plasmalemma.


Biorheology ◽  
1984 ◽  
Vol 21 (1-2) ◽  
pp. 155-170 ◽  
Author(s):  
Una S. Ryan ◽  
James W. Ryan

2021 ◽  
Author(s):  
Jonas Goretzko ◽  
Nicole Heitzig ◽  
Katharina Thomas ◽  
Einar Kleinhans Krogsaeter ◽  
Johannes Nass ◽  
...  

In response to pro-inflammatory challenges including pathogenic attack and tissue damage, the endothelial cell surface is rearranged to present leukocyte-engaging cell surface receptors. The initial contact needed for leukocyte tethering and rolling is mediated via adhesion demand-driven exocytosis of Weibel-Palade bodies (WPB) that contain the leukocyte receptor P-selectin together with the stabilizing co-factor CD63. We found that diminished expression of the endolysosomal non-selective cation channel TPC2 or inhibition of TPC2-mediated Ca2+-release via trans-Ned 19 led to reduced endolysosomal Ca2+ efflux, and blocked transfer of CD63 from late endosomes/lysosomes (LEL) to WPB, and a concomitant loss of P-selectin on the endothelial cell surface. Accordingly, P-selectin-mediated leukocyte recruitment to trans-Ned 19-treated HUVEC under flow was significantly reduced without disturbing VWF exocytosis. Our findings establish the endolysosome-related TPC2 Ca2+ channel as a key element in the maintenance of proper endothelial functions and a potential pharmacological target in the control of inflammatory leukocyte recruitment.


Sign in / Sign up

Export Citation Format

Share Document