Lysophosphatidic Acid Modulates Intestinal Epithelial Cell Function in Vitro

1998 ◽  
Vol 859 (1 INTESTINAL PL) ◽  
pp. 223-226 ◽  
Author(s):  
ANDREAS STURM ◽  
ANDREA BECKER ◽  
KLAUS-MARTIN SCHULTE ◽  
HARALD GOEBELL ◽  
AXEL U. DIGNASS
2000 ◽  
Vol 32 ◽  
pp. A19
Author(s):  
S. Jung ◽  
K.M. Schulte ◽  
B. Wiedenmann ◽  
A.U. Dignass

2000 ◽  
Vol 118 (4) ◽  
pp. A823 ◽  
Author(s):  
Axel U. Dignass ◽  
Klaus-Martin Schulte ◽  
Sandra Jung ◽  
Johanna Harder-d’Heureuse ◽  
Bertram Wiedenmann

1999 ◽  
Vol 80 (10) ◽  
pp. 1550-1557 ◽  
Author(s):  
C Booth ◽  
D F Hargreaves ◽  
J A Hadfield ◽  
A T McGown ◽  
C S Potten

BioMetals ◽  
2014 ◽  
Vol 27 (5) ◽  
pp. 857-874 ◽  
Author(s):  
Anne Blais ◽  
Cuibai Fan ◽  
Thierry Voisin ◽  
Najat Aattouri ◽  
Michel Dubarry ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e35008 ◽  
Author(s):  
Elhaseen Elamin ◽  
Daisy Jonkers ◽  
Kati Juuti-Uusitalo ◽  
Sven van IJzendoorn ◽  
Freddy Troost ◽  
...  

2007 ◽  
Vol 70 (10) ◽  
pp. 2417-2421 ◽  
Author(s):  
ELEONORA DEHLINK ◽  
KONRAD J. DOMIG ◽  
CHRISTINE LOIBICHLER ◽  
ELKE KAMPL ◽  
THOMAS EIWEGGER ◽  
...  

The mode of inactivation of probiotic bacteria may profoundly affect their immune-modulatory properties to the point of reversal of effects in in vitro human intestinal epithelial-like cell cultures (Caco-2). To further investigate the influence of inactivation treatment on cytokine production, three probiotic strains were evaluated—live, heat-inactivated, and formalininactivated strains—for their impact on interleukin (IL) 6, IL-8, and IL-10 production in Caco-2–leucocyte cocultures. The tested bacteria induced strain-specific production of IL-6, IL-8, and IL-10. No suppressive effects on cytokine synthesis were observed. Live microorganisms seemed to be slightly more potent inducers of cytokine production than nonviable strains, but differences to inactivated bacteria were not statistically significant. Our results indicate that heat and formalin treatments of probiotic microorganisms are equivalent inactivation methods in terms of induction of IL-6, IL-8, and IL-10 production in Caco-2–peripheral blood mononuclear cell cocultures and do not invert immune-modulatory effects.


2020 ◽  
Vol 295 (13) ◽  
pp. 4237-4251 ◽  
Author(s):  
Jie Zhang ◽  
Min Xu ◽  
Weihua Zhou ◽  
Dejian Li ◽  
Hong Zhang ◽  
...  

Parkinson disease autosomal recessive, early onset 7 (PARK7 or DJ-1) is involved in multiple physiological processes and exerts anti-apoptotic effects on multiple cell types. Increased intestinal epithelial cell (IEC) apoptosis and excessive activation of the p53 signaling pathway is a hallmark of inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). However, whether DJ-1 plays a role in colitis is unclear. To determine whether DJ-1 deficiency is involved in the p53 activation that results in IEC apoptosis in colitis, here we performed immunostaining, real-time PCR, and immunoblotting analyses to assess DJ-1 expression in human UC and CD samples. In the inflamed intestines of individuals with IBD, DJ-1 expression was decreased and negatively correlated with p53 expression. DJ-1 deficiency significantly aggravated colitis, evidenced by increased intestinal inflammation and exacerbated IEC apoptosis. Moreover, DJ-1 directly interacted with p53, and reduced DJ-1 levels increased p53 levels both in vivo and in vitro and were associated with decreased p53 degradation via the lysosomal pathway. We also induced experimental colitis with dextran sulfate sodium in mice and found that compared with DJ-1−/− mice, DJ-1−/−p53−/− mice have reduced apoptosis and inflammation and increased epithelial barrier integrity. Furthermore, pharmacological inhibition of p53 relieved inflammation in the DJ-1−/− mice. In conclusion, reduced DJ-1 expression promotes inflammation and IEC apoptosis via p53 in colitis, suggesting that the modulation of DJ-1 expression may be a potential therapeutic strategy for managing colitis.


Sign in / Sign up

Export Citation Format

Share Document