Heat- and Formalin-Inactivated Probiotic Bacteria Induce Comparable Cytokine Patterns in Intestinal Epithelial Cell–Leucocyte Cocultures

2007 ◽  
Vol 70 (10) ◽  
pp. 2417-2421 ◽  
Author(s):  
ELEONORA DEHLINK ◽  
KONRAD J. DOMIG ◽  
CHRISTINE LOIBICHLER ◽  
ELKE KAMPL ◽  
THOMAS EIWEGGER ◽  
...  

The mode of inactivation of probiotic bacteria may profoundly affect their immune-modulatory properties to the point of reversal of effects in in vitro human intestinal epithelial-like cell cultures (Caco-2). To further investigate the influence of inactivation treatment on cytokine production, three probiotic strains were evaluated—live, heat-inactivated, and formalininactivated strains—for their impact on interleukin (IL) 6, IL-8, and IL-10 production in Caco-2–leucocyte cocultures. The tested bacteria induced strain-specific production of IL-6, IL-8, and IL-10. No suppressive effects on cytokine synthesis were observed. Live microorganisms seemed to be slightly more potent inducers of cytokine production than nonviable strains, but differences to inactivated bacteria were not statistically significant. Our results indicate that heat and formalin treatments of probiotic microorganisms are equivalent inactivation methods in terms of induction of IL-6, IL-8, and IL-10 production in Caco-2–peripheral blood mononuclear cell cocultures and do not invert immune-modulatory effects.

1999 ◽  
Vol 80 (10) ◽  
pp. 1550-1557 ◽  
Author(s):  
C Booth ◽  
D F Hargreaves ◽  
J A Hadfield ◽  
A T McGown ◽  
C S Potten

BioMetals ◽  
2014 ◽  
Vol 27 (5) ◽  
pp. 857-874 ◽  
Author(s):  
Anne Blais ◽  
Cuibai Fan ◽  
Thierry Voisin ◽  
Najat Aattouri ◽  
Michel Dubarry ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e35008 ◽  
Author(s):  
Elhaseen Elamin ◽  
Daisy Jonkers ◽  
Kati Juuti-Uusitalo ◽  
Sven van IJzendoorn ◽  
Freddy Troost ◽  
...  

2020 ◽  
Vol 295 (13) ◽  
pp. 4237-4251 ◽  
Author(s):  
Jie Zhang ◽  
Min Xu ◽  
Weihua Zhou ◽  
Dejian Li ◽  
Hong Zhang ◽  
...  

Parkinson disease autosomal recessive, early onset 7 (PARK7 or DJ-1) is involved in multiple physiological processes and exerts anti-apoptotic effects on multiple cell types. Increased intestinal epithelial cell (IEC) apoptosis and excessive activation of the p53 signaling pathway is a hallmark of inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). However, whether DJ-1 plays a role in colitis is unclear. To determine whether DJ-1 deficiency is involved in the p53 activation that results in IEC apoptosis in colitis, here we performed immunostaining, real-time PCR, and immunoblotting analyses to assess DJ-1 expression in human UC and CD samples. In the inflamed intestines of individuals with IBD, DJ-1 expression was decreased and negatively correlated with p53 expression. DJ-1 deficiency significantly aggravated colitis, evidenced by increased intestinal inflammation and exacerbated IEC apoptosis. Moreover, DJ-1 directly interacted with p53, and reduced DJ-1 levels increased p53 levels both in vivo and in vitro and were associated with decreased p53 degradation via the lysosomal pathway. We also induced experimental colitis with dextran sulfate sodium in mice and found that compared with DJ-1−/− mice, DJ-1−/−p53−/− mice have reduced apoptosis and inflammation and increased epithelial barrier integrity. Furthermore, pharmacological inhibition of p53 relieved inflammation in the DJ-1−/− mice. In conclusion, reduced DJ-1 expression promotes inflammation and IEC apoptosis via p53 in colitis, suggesting that the modulation of DJ-1 expression may be a potential therapeutic strategy for managing colitis.


Blood ◽  
1970 ◽  
Vol 35 (1) ◽  
pp. 94-103 ◽  
Author(s):  
R. BEN DAWSON ◽  
SHEILA RAFAL ◽  
LEWIS R. WEINTRAUB

Abstract Heme from ingested hemoglobin—59Fe is taken into the epithelial cell of the small intestinal mucosa of the dog and the 59Fe subsequently appears in the plasma bound to transferrin. A substance was demonstrated in homogenates of the mucosa which releases iron from a hemoglobin substrate in vitro. Thus: (1) The addition of catalase to the mucosal homogenate reduces the "heme-splitting" reaction. In contrast, sodium azide, a catalase inhibitor, potentiates the reaction. This suggests that a peroxide generating system participates in the "heme-splitting" reaction. (2) Xanthine oxidase, an enzyme present in the intestinal epithelial cell, produces H2O2 by oxidation of its substrate. The addition of allopurinol, a xanthine oxidase inhibitor, to the intestinal mucosal homogenate diminishes the "heme-splitting" reaction. (3) Fractionation of the 50,000 Gm. supernatant of the mucosal homogenate on a G-200 Sephadex column shows the "heme-splitting" activity to have the same elution volume as xanthine oxidase, indicating a similar molecular weight. (4) The addition of a mucosal homogenate to a xanthine substrate results in the production of uric acid. These data suggest that xanthine oxidase in the intestinal epithelial cell is important in the release of iron from absorbed heme. The enzyme mediates the "heme-splitting" reaction by the generation of peroxides which, in turn, oxidize the alpha-methene bridge of the heme ring releasing iron and forming biliverdin.


2001 ◽  
Vol 280 (6) ◽  
pp. C1540-C1554 ◽  
Author(s):  
Rémy Gauthier ◽  
Charlène Harnois ◽  
Jean-François Drolet ◽  
John C. Reed ◽  
Anne Vézina ◽  
...  

To investigate whether human intestinal epithelial cell survival involves distinct control mechanisms depending on the state of differentiation, we analyzed the in vitro effects of insulin, pharmacological inhibitors of Fak, MEK/Erk, and PI3-K/Akt, and integrin (β1, β4)-blocking antibodies on the survival of the well-established human Caco-2 enterocyte-like and HIEC-6 cryptlike cell models. In addition, relative expression levels of six Bcl-2 homologs (Bcl-2, Bcl-XL, Mcl-1, Bax, Bak, and Bad) and activation levels of Fak, Erk-2, and Akt were analyzed. Herein, we report that 1) the enterocytic differentiation process results in the establishment of distinct profiles of Bcl-2 homolog expression levels, as well as p125Fak, p42Erk-2, and p57Aktactivated levels; 2) the inhibition of Fak, of the MEK/Erk pathway, or of PI3-K, have distinct impacts on enterocytic cell survival in undifferentiated (subconfluent Caco-2, confluent HIEC-6) and differentiated (30 days postconfluent Caco-2) cells; 3) exposure to insulin and the inhibition of Fak, MEK, and PI3-K resulted in differentiation state-distinct modulations in the expression of each Bcl-2 homolog analyzed; and 4) Fak, β1 and β4 integrins, as well as the MEK/Erk and PI3-K/Akt pathways, are distinctively involved in cell survival depending on the state of cell differentiation. Taken together, these data indicate that human intestinal epithelial cell survival is regulated according to differentiation state-specific control mechanisms.


2000 ◽  
Vol 32 ◽  
pp. A19
Author(s):  
S. Jung ◽  
K.M. Schulte ◽  
B. Wiedenmann ◽  
A.U. Dignass

1998 ◽  
Vol 859 (1 INTESTINAL PL) ◽  
pp. 223-226 ◽  
Author(s):  
ANDREAS STURM ◽  
ANDREA BECKER ◽  
KLAUS-MARTIN SCHULTE ◽  
HARALD GOEBELL ◽  
AXEL U. DIGNASS

Sign in / Sign up

Export Citation Format

Share Document