Contribution of Heat Transfer to Turbine Blades and Vanes for High Temperature Industrial Gas Turbines Part 1: Film Cooling

2006 ◽  
Vol 934 (1) ◽  
pp. 305-312 ◽  
Author(s):  
KEN-ICHIRO TAKEISHI ◽  
SUNAO AOKI
Author(s):  
David Mitchell ◽  
Anand Kulkarni ◽  
Alex Lostetter ◽  
Marcelo Schupbach ◽  
John Fraley ◽  
...  

The potential for savings provided to worldwide operators of industrial gas turbines, by transitioning from the current standard of interval-based maintenance to condition-based maintenance may be in the hundreds of millions of dollars. In addition, the operational flexibility that may be obtained by knowing the historical and current condition of life-limiting components will enable more efficient use of industrial gas turbine resources, with less risk of unplanned outages as a result of off-parameter operations. To date, it has been impossible to apply true condition-based maintenance to industrial gas turbines because the extremely harsh operating conditions in the heart of a gas turbine preclude using the necessary advanced sensor systems to monitor the machine’s condition continuously. Siemens, Rove Technical Services, and Arkansas Power Electronics International are working together to develop a potentially industry-changing technology to build smart, self-aware engine components that incorporate embedded, harsh-environment-capable sensors and high temperature capable wireless telemetry systems for continuously monitoring component condition in the hot gas path turbine sections. The approach involves embedding sensors on complex shapes, such as turbine blades, embedding wireless telemetry systems in regions with temperatures that preclude the use of conventional silicon-based electronics, and successfully transmitting the sensor information from an environment very hostile to wireless signals. The results presented will include those from advanced, harsh environment sensor and wireless telemetry component development activities. In addition, results from laboratory and high temperature rig and spin testing will be discussed.


2004 ◽  
Vol 10 (6) ◽  
pp. 443-457 ◽  
Author(s):  
Je-Chin Han

Gas turbines are used extensively for aircraft propulsion, land-based power generation, and industrial applications. Developments in turbine cooling technology play a critical role in increasing the thermal efficiency and power output of advanced gas turbines. Gas turbine blades are cooled internally by passing the coolant through several rib-enhanced serpentine passages to remove heat conducted from the outside surface. External cooling of turbine blades by film cooling is achieved by injecting relatively cooler air from the internal coolant passages out of the blade surface in order to form a protective layer between the blade surface and hot gas-path flow. For internal cooling, this presentation focuses on the effect of rotation on rotor blade coolant passage heat transfer with rib turbulators and impinging jets. The computational flow and heat transfer results are also presented and compared to experimental data using the RANS method with various turbulence models such as k-ε, and second-moment closure models. This presentation includes unsteady high free-stream turbulence effects on film cooling performance with a discussion of detailed heat transfer coef- ficient and film-cooling effectiveness distributions for standard and shaped film-hole geometry using the newly developed transient liquid crystal image method.


Author(s):  
J. R. Taylor

A discussion of the problems encountered in prediction of heat transfer in the turbine section of a gas turbine engine is presented. Areas of current gas turbine engine is presented. Areas of current concern to designers where knowledge is deficient or lacking are elucidated. Consideration is given to methods and problems associated with determination of heat transfer coefficients, external gas temperatures, and, where applicable, film cooling effectiveness. The paper is divided into parts dealing with turbine airfoil heat transfer, endwall heat transfer, and heat transfer in the internal cavities of cooled turbine blades. Recent literature dealing with these topics is listed.


2015 ◽  
Vol 137 (11) ◽  
Author(s):  
Amy Mensch ◽  
Karen Thole

Replacing natural gas fuels with coal-derived syngas in industrial gas turbines can lead to molten particle deposition on the turbine components. The deposition of the particles, which originate from impurities in the syngas fuels, can increase surface roughness and obstruct film cooling holes. These deposition effects increase heat transfer to the components and degrade the performance of cooling mechanisms, which are critical for maintaining component life. The current experimental study dynamically simulated molten particle deposition on a conducting blade endwall with the injection of molten wax. The key nondimensional parameters for modeling of conjugate heat transfer and deposition were replicated in the experiment. The endwall was cooled with internal impingement jet cooling and film cooling. Increasing blowing ratio mitigated some deposition at the film cooling hole exits and in areas of coolest endwall temperatures. After deposition, the external surface temperatures and internal endwall temperatures were measured and found to be warmer than the endwall temperatures measured before deposition. Although the deposition helps insulate the endwall from the mainstream, the roughness effects of the deposition counteract the insulating effect by decreasing the benefit of film cooling and by increasing external heat transfer coefficients.


Author(s):  
Huitao Yang ◽  
Hamn-Ching Chen ◽  
Je-Chin Han ◽  
Hee-Koo Moon

In modern gas turbines, the blade leading edge region is one area that experiences high heat transfer due to the stagnation flow. Many cooling techniques have been applied to blades, so they can withstand these high heat loads; one of the common methods in cooling turbine blades is to apply film cooling. In the present study, numerical simulations were performed to predict the film cooling effectiveness and heat transfer coefficient on the leading edge of a rotating blade in a 1-1/2 turbine stage using a Reynolds stress turbulence model together with a non-equilibrium wall function. In addition, the unsteady characteristics of the film cooling and heat transfer at different time phases during a passing period were also investigated.


Author(s):  
Tomohiko Sato ◽  
Kenichiro Takeishi

The demand for higher efficiency, higher temperature industrial gas turbines used for the combined cycle plants has increased. The key technology of such high-temperature gas turbines with a turbine inlet temperature of 1300°C is the development of reliable air-cooled turbine vanes and blades. The life prediction of such air-cooled turbine vanes is strongly dependent on an accurate prediction of the metal temperature. The problem of temperature prediction is essentially one of obtaining the convective heat transfer boundary conditions on the external and internal surfaces of the vane. In this paper, typical heat transfer data which are indispensable for the analysis, are presented. Improvement of the temperature prediction accuracy within 25°C, the final goal, is sought by feeding the discrepancy between the cascade test and the analysis back into the fundamental heat transfer tests.


Author(s):  
M. Ghorab ◽  
S. I. Kim ◽  
I. Hassan

Cooling techniques play a key role in improving efficiency and power output of modern gas turbines. The conjugate technique of film and impingement cooling schemes is considered in this study. The Multi-Stage Cooling Scheme (MSCS) involves coolant passing from inside to outside turbine blade through two stages. The first stage; the coolant passes through first hole to internal gap where the impinging jet cools the external layer of the blade. Finally, the coolant passes through the internal gap to the second hole which has specific designed geometry for external film cooling. The effect of design parameters, such as, offset distance between two-stage holes, gap height, and inclination angle of the first hole, on upstream conjugate heat transfer rate and downstream film cooling effectiveness performance are investigated computationally. An Inconel 617 alloy with variable properties is selected for the solid material. The conjugate heat transfer and film cooling characteristics of MSCS are analyzed across blowing ratios of Br = 1 and 2 for density ratio, 2. This study presents upstream wall temperature distributions due to conjugate heat transfer for different gap design parameters. The maximum film cooling effectiveness with upstream conjugate heat transfer is less than adiabatic film cooling effectiveness by 24–34%. However, the full coverage of cooling effectiveness in spanwise direction can be obtained using internal cooling with conjugate heat transfer, whereas adiabatic film cooling effectiveness has narrow distribution.


Sign in / Sign up

Export Citation Format

Share Document