Development and Testing of Harsh Environment, Wireless Sensor Systems for Industrial Gas Turbines

Author(s):  
David Mitchell ◽  
Anand Kulkarni ◽  
Alex Lostetter ◽  
Marcelo Schupbach ◽  
John Fraley ◽  
...  

The potential for savings provided to worldwide operators of industrial gas turbines, by transitioning from the current standard of interval-based maintenance to condition-based maintenance may be in the hundreds of millions of dollars. In addition, the operational flexibility that may be obtained by knowing the historical and current condition of life-limiting components will enable more efficient use of industrial gas turbine resources, with less risk of unplanned outages as a result of off-parameter operations. To date, it has been impossible to apply true condition-based maintenance to industrial gas turbines because the extremely harsh operating conditions in the heart of a gas turbine preclude using the necessary advanced sensor systems to monitor the machine’s condition continuously. Siemens, Rove Technical Services, and Arkansas Power Electronics International are working together to develop a potentially industry-changing technology to build smart, self-aware engine components that incorporate embedded, harsh-environment-capable sensors and high temperature capable wireless telemetry systems for continuously monitoring component condition in the hot gas path turbine sections. The approach involves embedding sensors on complex shapes, such as turbine blades, embedding wireless telemetry systems in regions with temperatures that preclude the use of conventional silicon-based electronics, and successfully transmitting the sensor information from an environment very hostile to wireless signals. The results presented will include those from advanced, harsh environment sensor and wireless telemetry component development activities. In addition, results from laboratory and high temperature rig and spin testing will be discussed.

Author(s):  
David Mitchell ◽  
Anand Kulkarni ◽  
Edward Roesch ◽  
Ramesh Subramanian ◽  
Andrew Burns ◽  
...  

The potential for savings provided to worldwide operators of industrial gas turbines, by transitioning from the current standard of interval-based maintenance to condition-based maintenance may be in the tens of millions of dollars per year. Knowledge of the historical and current condition of life-limiting components will enable more efficient use of industrial gas turbine resources via increased operational flexibility, with less risk of unplanned outages as a result of off-parameter operations. To date, it has been impossible to apply true condition-based maintenance to industrial gas turbines because the extremely harsh operating conditions in the heart of a gas turbine preclude using the necessary advanced sensor systems to monitor the machine’s condition continuously. The U.S. Department of Commerce’s National Institute of Standards and Technology – Advanced Technology Program (NIST-ATP) awarded the Joint Venture team of Siemens Power Generation, Inc. and MesoScribe Technologies, Inc. a four-year, $5.4 million program in November, 2004, titled Conformal, Direct-Write-Technology-Enabled, Wireless, Smart Turbine Components. The target was to develop a potentially industry-changing technology to build smart, self-aware engine components that incorporate embedded, harsh-environment-capable sensors and high temperature capable wireless telemetry systems for continuously monitoring component condition in both the compressor and turbine sections. The approach involves several difficult engineering challenges, including the need to embed sensors on complex shapes, such as turbine blades, embedding wireless telemetry systems in regions with temperatures that preclude the use of conventional silicon-based electronics, protecting both sensors and wireless devices from the extreme temperatures and environments of an operating gas turbine, and successfully transmitting the sensor information from an environment very hostile to wireless signals. The program included full-scale, F-class industrial gas turbine engine test demonstrations with smart components in both the compressor and turbine sections. The results of the development program and engine testing to date will be discussed.


Author(s):  
Keisuke Makino ◽  
Ken-Ichi Mizuno ◽  
Toru Shimamori

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1,350 °C in accordance with the project goals, we developed two silicon nitride materials with further unproved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. In this paper, we report on the properties of these materials, and present the results of evaluations of these materials when they are actually used for CGT components such as first stage turbine blades and power turbine nozzles.


Author(s):  
Hiroaki Endo ◽  
Robert Wetherbee ◽  
Nikhil Kaushal

An ever more rapidly accelerating trend toward pursuing more efficient gas turbines pushes the engines to hotter and more arduous operating conditions. This trend drives the need for new materials, coatings and associated modeling and testing techniques required to evaluate new component design in high temperature environments and complex stress conditions. This paper will present the recent advances in spin testing techniques that are capable of creating complex stress and thermal conditions, which more closely represent “engine like” conditions. The data from the tests will also become essential references that support the effort in Integrated Computational Materials Engineering (ICME) and in the advances in rotor design and lifing analysis models. Future innovation in aerospace products is critically depended on simultaneous engineering of material properties, product design, and manufacturing processes. ICME is an emerging discipline with an approach to design products, the materials that comprise them, and their associated materials processing methods by linking materials models at multiple scales (Structural, Macro, Meso, Micro, Nano, etc). The focus of the ICME is on the materials; understanding how processes produce material structures, how those structures give rise to material properties, and how to select and/or engineer materials for a given application [34]. The use of advanced high temperature spin testing technologies, including thermal gradient and thermo-mechanical cycling capabilities, combined with the innovative use of modern sensors and instrumentation methods, enables the examination of gas turbine discs and blades under the thermal and the mechanical loads that are more relevant to the conditions of the problematic damages occurring in modern gas turbine engines.


2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Uyioghosa Igie ◽  
Pericles Pilidis ◽  
Dimitrios Fouflias ◽  
Kenneth Ramsden ◽  
Panagiotis Laskaridis

Industrial gas turbines are susceptible to compressor fouling, which is the deposition and accretion of airborne particles or contaminants on the compressor blades. This paper demonstrates the blade aerodynamic effects of fouling through experimental compressor cascade tests and the accompanied engine performance degradation using turbomatch, an in-house gas turbine performance software. Similarly, on-line compressor washing is implemented taking into account typical operating conditions comparable with industry high pressure washing. The fouling study shows the changes in the individual stage maps of the compressor in this condition, the impact of degradation during part-load, influence of control variables, and the identification of key parameters to ascertain fouling levels. Applying demineralized water for 10 min, with a liquid-to-air ratio of 0.2%, the aerodynamic performance of the blade is shown to improve, however most of the cleaning effect occurred in the first 5 min. The most effectively washed part of the blade was the pressure side, in which most of the particles deposited during the accelerated fouling. The simulation of fouled and washed engine conditions indicates 30% recovery of the lost power due to washing.


Author(s):  
Keith McManus ◽  
Fei Han ◽  
Wayne Dunstan ◽  
Corneliu Barbu ◽  
Minesh Shah

The thermoacoustic response of an industrial-scale gas turbine combustor to fuel flow perturbations is examined. Experimental measurements in a laboratory combustor along with numerical modeling results are used to identify the dynamic behavior of the combustor over a variety of operating conditions. A fast-response actuator was coupled to the fuel system to apply continuous sinusoidal perturbations to the total fuel mass flow rate. The effects of these perturbations on the combustor pressure oscillation characteristics as well as overall operability of the system are described. The results of this work suggest that persistent excitation of the fuel system may present a viable means of controlling combustion dynamics in industrial gas turbine and, in turn, enhance their performance.


Author(s):  
Shashank Shetty ◽  
Xianchang Li ◽  
Ganesh Subbuswamy

Due to the unique role of gas turbine engines in power generation and aircraft propulsion, significant effort has been made to improve the gas turbine performance. As a result, the turbine inlet temperature is usually elevated to be higher than the metal melting point. Therefore, effective cooling of gas turbines is a critical task for engines’ efficiency as well as safety and lifetime. Film cooling has been used to cool the turbine blades for many years. The main issues related to film cooling are its poor coverage, aerodynamic loss, and increase of heat transfer coefficient due to strong mixing. To overcome these problems, film cooling with backward injection has been found to produce a more uniform cooling coverage under low pressure and temperature conditions and with simple cylindrical holes. Therefore, the focus of this paper is on the performance of film cooling with backward injection at gas turbine operating conditions. By applying numerical simulation, it is observed that along the centerline on both concave and convex surfaces, the film cooling effectiveness decreases with backward injection. However, cooling along the span is improved, resulting in more uniform cooling.


Author(s):  
S. J. Gill ◽  
M. D. Ingallinera ◽  
A. G. Sheard

The continuing development of industrial gas turbines is resulting in machines of increasing power and efficiency. The need to continue this trend is focusing attention on minimizing all loss mechanisms within the machine, including those associated with turbine blade tip clearance. In order to study tip clearance in the turbine, real time measurement is required of clearance between turbine blades and the casing in which they run. This measurement is not routinely performed, due to the harsh nature of the turbine environment. On those occasions when turbine tip clearance is measured, it is typically in development vehicles, often using cooled probes that are somewhat unsuitable for use in production gas turbines. In this paper a program of work is reported that was undertaken with the purpose of identifying a promising turbine tip clearance measurement system that used the capacitive gap measurement technique. Issues surrounding the application of three systems to the turbine section of a GE MS6001FA gas turbine are identified and reported. Performance of the three evaluated systems is analyzed.


1982 ◽  
Vol 104 (2) ◽  
pp. 429-438 ◽  
Author(s):  
M. B. Cutrone ◽  
M. B. Hilt ◽  
A. Goyal ◽  
E. E. Ekstedt ◽  
J. Notardonato

The work described in this paper is part of the DOE/LeRC Advanced Conversion-Technology Project (ACT). The program is a multiple contract effort with funding provided by the Department of Energy, and technical program management provided by NASA LeRC. Combustion tests are in progress to evaluate the potential of seven advanced combustor concepts for achieving low NOx emissions for utility gas turbine engines without the use of water injection. Emphasis was on the development of the required combustor aerothermodynamic features for burning high nitrogen fuels. Testing was conducted over a wide range of operating conditions for a 12:1 pressure ratio heavy-duty gas turbine. Combustors were evaluated with distillate fuel, SRC-II coal-derived fuel, residual fuel, and blends. Test results indicate that low levels of NOx and fuel-bound nitrogen conversion can be achieved with rich-lean combustors for fuels with high fuel-bound nitrogen. In addition, ultra-low levels of NOx can be achieved with lean-lean combustors for fuels with low fuel-bound nitrogen.


1978 ◽  
Author(s):  
R. Raj ◽  
S. L. Moskowitz

The future generation is looking forward to the use of gas turbine inlet temperatures as high as 3000 F (1650 C) with attendant thermal efficiencies of from 40 to 50 percent in combined cycle electric power plants. In addition to the use of high temperature for improved efficiency, the national needs, due to scarcity of oil and natural gas, will heavily stress the use of coal as a fuel. The particulate from combustion of coal derived liquid and gaseous fuels, even after employing hot gas cleanup systems, may damage conventional turbine blades and thus reduce turbine life. This paper is intended to show how a transpiration-cooled blade can cope with both of the foregoing problems simultaneously. The fundamental aspects of the transpiration-cooled blade technology will also be explained. Experimental results using this design concept indicate that significant erosion resistance is feasible for gas turbine blading in the near future.


2009 ◽  
Vol 417-418 ◽  
pp. 545-548 ◽  
Author(s):  
Kazuhiro Ogawa ◽  
Takahiro Niki

Hot section parts of combined cycle gas turbines are susceptible to degradation due to high temperature creep, crack formation by thermal stress, and high temperature oxidation, etc. Thus, regularly repairing or replacing the hot section parts such as gas turbine blades is inevitable. For this purpose, revolutionary and advanced repair technologies for gas turbines have been developed to enhance reliability of the repaired parts and reduce the maintenance cost of the gas turbines. The cold spraying process, which has been studied as not only a new coating technology but also as a process for obtaining a thick deposition layer, is proposed as a potential repairing solution. The process results in little or no oxidation of the spray materials, so the surfaces stay clean, which in turn enables superior bonding. Since the operating temperature is relatively low, the particles do not melt and the shrinkage on cooling is very low. In this study, the cold spraying conditions were optimized by taking into account the particle kinetic energy and the rebound energy for application in repairing gas turbine blades. A high quality cold-sprayed layer is that which has lowest porosity; thus the spraying parameters were optimized to achieve low-porosity layer, which was verified by scanning electron microscopy (SEM).


Sign in / Sign up

Export Citation Format

Share Document