Phosphatidylinositol-4,5-bisphosphate-dependent Facilitation of the ATP-dependent Secretory Activity in Mouse Pituitary Cells

2009 ◽  
Vol 1152 (1) ◽  
pp. 165-173 ◽  
Author(s):  
Simon Sedej ◽  
Iman Singh Gurung ◽  
Thomas Binz ◽  
Marjan Rupnik
Author(s):  
William J. Dougherty

The regulation of secretion in exocrine and endocrine cells has long been of interest. Electron microscopic and other studies have demonstrated that secretory proteins synthesized on ribosomes are transported by the rough ER to the Golgi complex where they are concentrated into secretory granules. During active secretion, secretory granules fuse with the cell membrane, liberating and discharging their contents into the perivascular spaces. When secretory activity is suppressed in anterior pituitary cells, undischarged secretory granules may be degraded by lysosomes. In the parathyroid gland, evidence indicates that the level of blood Ca ions regulates both the production and release of parathormone. Thus, when serum Ca is low, synthesis and release of parathormone are both stimulated; when serum Ca is elevated, these processes are inhibited.


2003 ◽  
Vol 178 (1) ◽  
pp. 71-82 ◽  
Author(s):  
J Honda ◽  
Y Manabe ◽  
R Matsumura ◽  
S Takeuchi ◽  
S Takahashi

IGF-I is expressed in somatotrophs, and IGF-I receptors are expressed in most somatotrophs and some corticotrophs in the mouse pituitary gland. Our recent study demonstrated that IGF-I stimulates the proliferation of corticotrophs in the mouse pituitary. These results suggested that somatotrophs regulate corticotrophic functions as well as somatotrophic functions by the mediation of IGF-I molecules. The present study aimed to clarify factors regulating pituitary IGF-I expression and also the roles exerted by IGF-I within the mouse anterior pituitary gland. Mouse anterior pituitary cells were isolated and cultured under serum-free conditions. GH (0.5 or 1 microg/ml), ACTH (10(-8) or 10(-7) M), GH-releasing hormone (GHRH; 10(-8) or 10(-7) M), dexamethasone (DEX; 10(-8) or 10(-7) M) and estradiol-17beta (e2; 10(-11) or 10(-9) M) were given for 24 h. IGF-I mRNA levels were measured using competitive RT-PCR, and GH and pro-opiomelanocortin (POMC) mRNA levels were measured using Northern blotting analysis. GH treatment significantly increased IGF-I mRNA levels (1.5- or 2.1-fold). ACTH treatment did not alter GH and IGF-I mRNA levels. IGF-I treatment decreased GH mRNA levels (0.7- or 0.5-fold), but increased POMC mRNA levels (1.8-fold). GH treatment (4 or 8 microg/ml) for 4 days increased POMC mRNA levels. GHRH treatment increased GH mRNA levels (1.3-fold), but not IGF-I mRNA levels. DEX treatment significantly decreased IGF-I mRNA levels (0.8-fold). e2 treatment did not affect IGF-I mRNA levels. GH receptor mRNA, probably with GH-binding protein mRNA, was detected in somatotrophs, and some mammotrophs and gonadotrophs by in situ hybridization using GH receptor cDNA as a probe. These results suggested that IGF-I expression in somatotrophs is regulated by pituitary GH, and that IGF-I suppresses GH expression and stimulates POMC expression at the transcription level. Pituitary IGF-I produced in somatotrophs is probably involved in the regulation of somatotroph and corticotroph functions.


Endocrinology ◽  
2007 ◽  
Vol 148 (5) ◽  
pp. 1946-1953 ◽  
Author(s):  
Raul M. Luque ◽  
Geraldine Amargo ◽  
Shinya Ishii ◽  
Corrinne Lobe ◽  
Roberta Franks ◽  
...  

This report describes the development and validation of the rGHp-Cre transgenic mouse that allows for selective Cre-mediated recombination of loxP-modified alleles in the GH-producing cells of the anterior pituitary. Initial screening of the rGHp-Cre parental line showed Cre mRNA was specifically expressed in the anterior pituitary gland of adult Cre+/− mice and cephalic extracts of e17 Cre+/− fetuses. Heterozygote rGHp-Cre transgenic mice were crossbred with Z/AP reporter mice to generate Cre+/−,Z/AP+/− offspring. In this model system, the GH promoter-driven, Cre-mediated recombination of the Z/AP reporter leads to human placental alkaline phosphatase (hPLAP) expression that serves to mark cells that currently produce GH, in addition to cells that would have differentiated from GH cells but currently do not express the GH gene. Double immunocytochemistry of adult male and female Cre+/−,Z/AP+/− pituitary cells revealed the majority (∼99%) of GH-producing cells of the anterior pituitary also expressed hPLAP, whereas ACTH-, TSH-, and LH-producing cells were negative for hPLAP, confirming previous reports that corticotropes, thyrotropes, and gonadotropes develop independently of the somatotrope lineage. A small subset (∼10%) of the prolactin-producing cells was positive for hPLAP, consistent with previous reports showing lactotropes can arise from somatotropes during pituitary development. However, the fact that 90% of prolactin-producing cells were negative for hPLAP suggests that the majority of lactotropes in the adult mouse pituitary gland develop independently of the somatotrope lineage. In addition to developmental studies, the rGHp-Cre transgenic mouse will provide a versatile tool to study the role of a variety of genes in somatotrope function and neoplastic transformation.


1969 ◽  
Vol 61 (1) ◽  
pp. 133-136 ◽  
Author(s):  
B. Messier

ABSTRACT Destruction of the thyroid gland in the mouse induces proliferation of pituitary thyrotropes. This phenomenon was studied quantitatively with 3H-thymidine, before and after oral administration of thyroxine. The frequency of radioactive cells in the intact animal is 3.4 per 10 000 pituitary cells. This value rises to 19.6, 18.4 and 56.0 four, eight, and twelve months after thyroidectomy, respectively. All these increased values are brought back to normal levels after 5 to 10 days of thyroxine treatment. Thus, the intense proliferation of pituitary thyrotropes following thyroidectomy is still responsive to the homeostatic action of thyroxine.


1993 ◽  
Vol 41 (2) ◽  
pp. 151-156 ◽  
Author(s):  
H Vankelecom ◽  
P Matthys ◽  
J Van Damme ◽  
H Heremans ◽  
A Billiau ◽  
...  

We have previously shown that bioactive interleukin-6 (IL-6) is produced by rat and mouse (anterior) pituitary cells in vitro. Since the amount produced correlated with the presence of S-100-containing folliculostellate (FS) cells, these cells were suggested to be a source of IL-6 in the anterior pituitary (AP) lobe. In the present study we used immunocytochemical techniques to confirm this presumption. Freshly isolated mouse pituitary cells were subjected to immunocytochemical procedures whereby two different (neutralizing) monoclonal antibodies (MAb) against mouse IL-6 (6B4 and 20F3) and a polyclonal antiserum raised against bovine S-100 were used as primary antibodies. Single immunostaining revealed a small portion of mouse pituitary cells (about 6.5%) to be positive for IL-6 immunoreactivity with both antibodies. Importantly, the same proportion of cells was found to be IL-6 positive if only the AP was used as the cell source. About 7.5% of the pituitary cells stained for the presence of S-100 immunoreactivity. Positive staining for IL-6 was also found in pituitary cell samples from 2-day-old monolayer cultures and from redispersed 9-day-old histotypic aggregates, which both secreted bioassayable IL-6. In contrast, no IL-6 staining was found in AtT-20 cells, an established ACTH-secreting tumor cell line of the mouse pituitary which did not secrete bioactive IL-6. The specificity of the IL-6 immunostaining was demonstrated by a total loss of staining when MAb 6B4 was omitted or replaced by irrelevant rat IgG. Conclusively, pre-adsorption of the anti-IL-6 MAb (6B4) with recombinant mouse IL-6 totally abolished staining of pituitary cells. Double immunostaining for IL-6 and S-100 revealed that most if not all of the IL-6-containing pituitary cells were positive for S-100. Few of the S-100-containing cells did not stain for IL-6. These results confirm our previous hypothesis that FS cells, characterized by immunostaining of S-100 protein, contain bioactive and immunoreactive IL-6 and therefore are very likely producers of IL-6 in the AP. Furthermore, our results suggest that IL-6 is implicated in the local regulatory role ascribed to FS cells in the pituitary gland.


2000 ◽  
Vol 165 (2) ◽  
pp. 493-501 ◽  
Author(s):  
S Oomizu ◽  
J Honda ◽  
S Takeuchi ◽  
T Kakeya ◽  
T Masui ◽  
...  

Oestrogen stimulates the proliferation of pituitary cells. The present study was designed to clarify the involvement of transforming growth factor-alpha (TGF-alpha) in the oestrogen-induced growth of mouse pituitary cells in vitro. Anterior pituitary cells obtained from ICR male mice were cultured in a primary serum-free culture system. Proliferation of pituitary cells was detected by monitoring the cellular uptake of bromodeoxyuridine. Secretory cell types were immunocytochemically determined. Treatment with TGF-alpha (0.1 and 1 ng/ml) for 5 days stimulated cell proliferation. Since TGF-alpha binds to the epidermal growth factor (EGF) receptor, this action may be exerted through the EGF receptor. Oestradiol-17beta (OE(2), 10(-)(9) M) stimulated mammotrophic and corticotrophic cell proliferation. RG-13022, an EGF receptor inhibitor, inhibited the cell proliferation induced by EGF or OE(2), showing that the EGF receptor was involved in the growth response in mammotrophs and corticotrophs. Treatment with antisense TGF-alpha oligodeoxynucleotide (ODN) inhibited the cell proliferation induced by OE(2), but treatment with antisense EGF ODN did not. RT-PCR analysis revealed that OE(2) stimulated TGF-alpha mRNA and EGF receptor mRNA expression. These results indicate that TGF-alpha mediates the stimulatory effect of oestrogen on the pituitary cell proliferation in a paracrine or autocrine manner, and that EGF receptor expression is stimulated by oestrogen.


2015 ◽  
Vol 12 (2) ◽  
pp. 40-46
Author(s):  
Anna Konstantinovna Lipatenkova ◽  
Larisa Konstantinovna Dzeranova ◽  
Ekaterina Aleksandrovna Pigarova ◽  
Ludmila Igorevna Astaf'eva ◽  
Andrey Yur'evich Grigor'ev ◽  
...  

Silent, or clinically nonfunctioning adenomas are morphologically heterogeneous group, characterized by positive immunoreactivity for one or more hormones classically secreted by normal pituitary cells but without clinical expression. Although in some occasions enhanced or changed secretory activity can develop over time. According to immunoreactivity they are divided into "silent" gonado-, cortico-, somato -, mammo – and thyrotropinomas, oncocytomas, «zero-cell» tumors. All types of "silent" adenomas have different biological activity, secretory capacity and outcomes in the postoperative period. This series of clinical cases shows more «aggressiveness», a higher risk of relapse for "silent" cortico- and somatotropinomas. Immunohistochemical analysis of residual tissue can be used to identify patients with high risk of recurrence, to develop optimal treatment and follow-up.


Sign in / Sign up

Export Citation Format

Share Document