Overall Quality and Shelf Life of Minimally Processed and Modified Atmosphere Packaged “Ready-to-Eat” Pomegranate Arils

2009 ◽  
Vol 74 (5) ◽  
pp. C399-C405 ◽  
Author(s):  
Zehra Ayhan ◽  
Okan Eştürk
2013 ◽  
Vol 37 (4) ◽  
pp. 729-736 ◽  
Author(s):  
Mohammad Mizanur Rahman ◽  
Md Miaruddin ◽  
Md. Golam Ferdous Chowdhury ◽  
Md. Hafizul Haque Khan ◽  
MA Matin

The experiment was conducted to evaluate the effect of packaging materials on the quality and shelf life of green chili (Capsicum annuum) using passive modification of modified atmosphere packaging system. The modified atmosphere was created by making perforation in the polypropylene packets. Green chili pre-treated with chlorine water and then packaging in 0.3% perforated polypropylene packet resulted substantial reduction of weight loss and rotting/shriveling. These treatment combinations also considerably retained vitamin C, ß-carotene, moisture content, etc. Under this condition the retention of quality and shelf life of green chili could be extended up to 10 days at ambient condition as compared to non-treated and without packaging. DOI: http://dx.doi.org/10.3329/bjar.v37i4.14397 Bangladesh J. Agril. Res. 37(4): 729-736, December 2012


1996 ◽  
Vol 121 (4) ◽  
pp. 722-729 ◽  
Author(s):  
Kevin I. Segall ◽  
Martin G. Scanlon

The first goal of this study was to determine the packaging film O2 permeability required to maintain a steady-state O2 concentration of 3% in modified-atmosphere packaging (MAP) of minimally processed romaine lettuce (Lactuca sativa L.). The second goal of the study was to determine the extent to which MAP could preserve lettuce quality and consequently extend product shelf life. Oxygen consumption rates of commercially prepared lettuce samples were determined in a closed system for each of three atmospheres (3% O2 combined with either 6%, 10%, or 14% CO2). Enzymatic, quadratic, and linear mathematical models were compared to determine which best described the respiratory data. The linear model was the most suitable and was used to predict the O2 consumption rate of the minimally processed romaine lettuce under the desired package headspace gas concentrations. The predicted O2 consumption rate was used to calculate the necessary O2 permeability for the packaging film. Packages (21.6 × 25.4 cm) were constructed from a polypropylene-polyethylene-laminate film with the appropriate O2 permeability. Packaged samples were stored under three modified atmospheres (MAs) (3% O2 combined with either 6%, 10%, or 14% CO2) for 20 days, and headspace gas concentrations, lettuce appearance, and color were evaluated every other day. Growth of pectinolytic and lactic acid bacteria was also studied. The O2 consumption rate of the lettuce decreased with increasing CO2 levels. The O2 levels in the MA packages equilibrated at 7% to 11%. Compared to a control atmosphere of air, MAP delayed the development of tissue discoloration. Preliminary results indicated no effect of MAP on microbial growth. Of the three CO2 levels, 10% was slightly more effective than 6% and 14%. Critical choice of packaging permeabilities combined with MAP maintained the quality of minimally processed romaine lettuce and thereby increased shelf life by about 50%.


2017 ◽  
Vol 80 (5) ◽  
pp. 740-749 ◽  
Author(s):  
Nuria García-Martínez ◽  
Pedro Andreo-Martínez ◽  
Luis Almela ◽  
Lucía Guardiola ◽  
José A. Gabaldón

ABSTRACT In recent years the sales of minimally processed vegetables have grown exponentially as a result of changes in consumer habits. The availability of artichoke buds as a ready-to-eat product would be, therefore, highly advantageous. However, minimally processed artichoke hearts are difficult to preserve because of their rapid browning and the proliferation of naturally occurring microorganisms. We developed artichoke hearts prepared as ready-to-eat products that maintain the characteristics of the fresh product. The microbiological stability, sensory qualities, and shelf life of the processed artichoke hearts were determined. During the shelf life, Salmonella, Listeria monocytogenes, and Escherichia coli counts were below the limits legally established by European regulations for minimally processed vegetables. The pH played an important role in microbial growth. Artichoke hearts had lower microbial counts in experiments conducted at pH 4.1 than in experiments conducted at pH 4.4, although the recommended threshold value for total plate count (7 log CFU/g) was not exceeded in either case. Sensory parameters were affected by the microorganisms, and artichoke products at lower pH had better sensory qualities. Vacuum impregnation techniques, modified atmosphere packaging, and low storage temperature were very effective for increasing the shelf life of minimally processed artichokes. The average shelf life was approximately 12 to 15 days.


2019 ◽  
Vol 156 ◽  
pp. 110953 ◽  
Author(s):  
Lluvia de Abril Alexandra Soriano-Melgar ◽  
Denise Raddatz-Mota ◽  
Fernando Díaz de León-Sánchez ◽  
Lizette Liliana Rodríguez-Verástegui ◽  
Fernando Rivera-Cabrera

Food Control ◽  
2014 ◽  
Vol 46 ◽  
pp. 403-411 ◽  
Author(s):  
Lorenzo Siroli ◽  
Francesca Patrignani ◽  
Diana I. Serrazanetti ◽  
Giulia Tabanelli ◽  
Chiara Montanari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document