Land use and climate change on the Yamal Peninsula of north-west Siberia: some ecological and socio-economic implications

1999 ◽  
Vol 18 (2) ◽  
pp. 367-373 ◽  
Author(s):  
Bruce C. Forbes
2020 ◽  
Author(s):  
Timo Kumpula ◽  
Roza Laptander ◽  
Bruce C. Forbes

<p>The traditional landuse in the Yamal is reindeer herding practiced by nomadic Nenets herders. The hydrocarbon industry is presently the source of most ecological changes in the Yamal peninsula and socio-economic impacts experienced by migratory Nenets herders who move annually between winter pastures at treeline and the coastal summer pastures by the Kara Sea.</p><p>In central Yamal peninsula which is permafrost area both natural and anthropogenic changes have occurred during the past 40 years. Mega size Bovanenkovo Gas Field was discovered in 1972 and it was opened in production and in 2012. We have studied gas field development and natural changes like increases in shrub growth, cryogenic landslides, drying lakes in the region and these impacts to Nenets reindeer herding.</p><p>Nenets managing collective and privately owned herds of reindeer have proven adapt in responding to a broad range of intensifying industrial impacts at the same time as they have been dealing with symptoms of a warming climate and thawing permafrost phenomena.</p><p>The results of climate change together with the industrial development of the Yamal Peninsula have a serious impact to the Nenets nomadic reindeer husbandry. Their consequences make Nenets reindeer herders to change their migration routes and the way of working with reindeer. During several years, we were making interviews with Nenets reindeer herders about the influence of climate change and industrialization of the tundra on the quality of Nenets nomads’ life and their work with reindeer. Reindeer herders said that impacts of industrial development have reduced their migration opportunities, as well as the quality of pastures for grazing, which has fatal the effects during icing on the tundra in the winter. At the same time, in the summer reindeer have more food because increasing of the green vegetation. </p><p>Here we detail both the climate change impacts and spatial extent of gas field growth, landslides drying lakes, shrub increase and the dynamic relationship between Nenets nomads and their rapidly evolving social-ecological system.</p>


2020 ◽  
Vol 29 (8) ◽  
pp. 649 ◽  
Author(s):  
Mauro E. González ◽  
Ariel A. Muñoz ◽  
Álvaro González-Reyes ◽  
Duncan A. Christie ◽  
Jason Sibold

Historical fire regimes are critical for understanding the potential effects of changing climate and human land-use on forest landscapes. Fire is a major disturbance process affecting the Andean Araucaria forest landscape in north-west Patagonia. The main goals of this study were to reconstruct the fire history of the Andean Araucaria–Nothofagus forests and to evaluate the coupled influences of climate and humans on fire regimes. Reconstructions of past fires indicated that the Araucaria forest landscape has been shaped by widespread, stand-replacing fires favoured by regional interannual climate variability related to major tropical and extratropical climate drivers in the southern hemisphere. Summer precipitation and streamflow reconstructions tended to be below average during fire years. Fire events were significantly related to positive phases of the Southern Annular Mode and to warm and dry summers following El Niño events. Although Euro-Chilean settlement (1883–1960) resulted in widespread burning, cattle ranching by Pehuenche Native Americans during the 18th and 19th centuries also appears to have changed the fire regime. In the context of climate change, two recent widespread wildfires (2002 and 2015) affecting Araucaria forests appear to be novel and an early indication of a climate change driven shift in fire regimes in north-west Patagonia.


Geosciences ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 393
Author(s):  
Evgeny Mikhailovich Chuvilin ◽  
Natalia Sergeevna Sokolova ◽  
Boris Aleksandrovich Bukhanov ◽  
Dinara Anvarovna Davletshina ◽  
Mikhail Yurievich Spasennykh

Gas-emission craters discovered in northern West Siberia may arise under a specific combination of shallow and deep-seated permafrost conditions. A formation model for such craters is suggested based on cryological and geological data from the Yamal Peninsula, where shallow permafrost encloses thick ground ice and lenses of intra- and subpermafrost saline cold water (cryopegs). Additionally, the permafrost in the area is highly saturated with gas and stores large accumulations of hydrocarbons that release gas-water fluids rising to the surface through faulted and fractured crusts. Gas emission craters in the Arctic can form in the presence of gas-filled cavities in ground ice caused by climate warming, rich sources of gas that can migrate and accumulate under pressure in the cavities, intrapermafrost gas-water fluids that circulate more rapidly in degrading permafrost, or weak permafrost caps over gas pools.


Author(s):  
Maria Bulakh ◽  
Anatoly B. Zolotukhin ◽  
Ove T. Gudmestad

Huge reserves of hydrocarbons on the shelf of the Kara Sea, adjacent to the west coast of the Yamal Peninsula are to be developed in the XXI century. This large oil and gas area in northern West Siberia has prospective resources of 56 trillion barrels of oil equivalents (boe). The Russia Federation has no other regions with similar concentrations of undeveloped hydrocarbons. Creating this unique Kara Sea gas production centre could provide in the years 2015–2030 a production of at least 800 billion Sm3 of gas per year providing both domestic and external demand with this fuel, and supply it to the external market, (http://oilgasindustry.ru).


Sign in / Sign up

Export Citation Format

Share Document