scholarly journals Fire history in Andean Araucaria–Nothofagus forests: coupled influences of past human land-use and climate on fire regimes in north-west Patagonia

2020 ◽  
Vol 29 (8) ◽  
pp. 649 ◽  
Author(s):  
Mauro E. González ◽  
Ariel A. Muñoz ◽  
Álvaro González-Reyes ◽  
Duncan A. Christie ◽  
Jason Sibold

Historical fire regimes are critical for understanding the potential effects of changing climate and human land-use on forest landscapes. Fire is a major disturbance process affecting the Andean Araucaria forest landscape in north-west Patagonia. The main goals of this study were to reconstruct the fire history of the Andean Araucaria–Nothofagus forests and to evaluate the coupled influences of climate and humans on fire regimes. Reconstructions of past fires indicated that the Araucaria forest landscape has been shaped by widespread, stand-replacing fires favoured by regional interannual climate variability related to major tropical and extratropical climate drivers in the southern hemisphere. Summer precipitation and streamflow reconstructions tended to be below average during fire years. Fire events were significantly related to positive phases of the Southern Annular Mode and to warm and dry summers following El Niño events. Although Euro-Chilean settlement (1883–1960) resulted in widespread burning, cattle ranching by Pehuenche Native Americans during the 18th and 19th centuries also appears to have changed the fire regime. In the context of climate change, two recent widespread wildfires (2002 and 2015) affecting Araucaria forests appear to be novel and an early indication of a climate change driven shift in fire regimes in north-west Patagonia.

2022 ◽  
Vol 507 ◽  
pp. 120007
Author(s):  
I. Drobyshev ◽  
N. Ryzhkova ◽  
M. Niklasson ◽  
A. Zhukov ◽  
I. Mullonen ◽  
...  

2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


1999 ◽  
Vol 21 (1) ◽  
pp. 39 ◽  
Author(s):  
AB Craig

This paper examines a range of environmental, research and practical issues affecting fire management of pastoral lands in the southern part of the Kimberley region in Western Australia. Although spinifex grasslands dominate most leases, smaller areas of more productive pastures are crucially important to many enterprises. There is a lack of local documentation of burning practices during traditional Aboriginal occupation; general features of the fire regime at that time can be suggested on the basis of information from other inland areas. Definition of current tire regimes is improving through interpretation of NOAA-AVHRR satellite imagery. Irregular extensive wildfires appear to dominate, although this should be confirmed by further accumulation, validation and analysis of fire history data. While these fires cause ma,jor difficulties. controlled burn~ng is a necessary part of station management. Although general management guidelines have been published. local research into tire-grazing effects has been very limited. For spinifex pastures, reconimendations are generally consistent with those applying elsewhere in northern Australia. They favour periodic burning of mature spinifex late in the year, before or shortly after the arrival of the first rains, with deferment of grazing. At that time. days of high fire danger may still be expected and prediction of fire behaviour is critical to burning decisions. Early dry-season burning is also required for creating protective tire breaks and to prepare for burning later in the year. Further development of tools for predicting fire behaviour, suited to the discontinuous fuels characteristic of the area, would be warranted. A range of questions concerning the timing and spatial pattern of burning, control of post-fire grazing, and the economics of fire management, should be addressed as resources permit. This can be done through a combination of opportunistic studies, modelling and documentation of local experience. The development of an expert system should be considered to assist in planning and conducting burning activities. Key words: Kimberley, fire regimes, fire management, pastoralism, spinifex


2021 ◽  
Author(s):  
Jie Zhao ◽  
Chao Yue ◽  
Philippe Ciais ◽  
Xin Hou ◽  
Qi Tian

<p>Wildfire is the most prevalent natural disturbance in the North American boreal (BNA) forest and can cause post-fire land surface temperature change (ΔLST<sub>fire</sub>) through biophysical processes. Fire regimes, such as fire severity, fire intensity and percentage of burned area (PBA), might affect ΔLST<sub>fire</sub> through their impacts on post-fire vegetation damage. However, the difference of the influence of different fire regimes on the ΔLST<sub>fire</sub> has not been quantified in previous studies, despite ongoing and projected changes in fire regimes in BNA in association with climate change. Here we employed satellite observations and a space-and-time approach to investigate diurnal ΔLST<sub>fire</sub> one year after fire across BNA. We further examined potential impacts of three fire regimes (i.e., fire intensity, fire severity and PBA) and latitude on ΔLST<sub>fire</sub> by simple linear regression analysis and multiple linear regression analysis in a stepwise manner. Our results demonstrated pronounced asymmetry in diurnal ΔLST<sub>fire</sub>, characterized by daytime warming in contrast to nighttime cooling over most BNA. Such diurnal ΔLST<sub>fire</sub> also exhibits a clear latitudinal pattern, with stronger daytime warming and nighttime cooling one year after fire in lower latitudes, whereas in high latitudes fire effects are almost neutral. Among the fire regimes, fire severity accounted for the most (43.65%) of the variation of daytime ΔLST<sub>fire</sub>, followed by PBA (11.6%) and fire intensity (8.5%). The latitude is an important factor affecting the influence of fire regimes on daytime ΔLST<sub>fire</sub>. The sensitivity of fire intensity and PBA impact on daytime ΔLST<sub>fire</sub> decreases with latitude. But only fire severity had a significant effect on nighttime ΔLST<sub>fire</sub> among three fire regimes. Our results highlight important fire regime impacts on daytime ΔLST<sub>fire</sub>, which might play a critical role in catalyzing future boreal climate change through positive feedbacks between fire regime and post-fire surface warming.</p>


2021 ◽  
Vol 18 (18) ◽  
pp. 5053-5083
Author(s):  
Jessica L. McCarty ◽  
Juha Aalto ◽  
Ville-Veikko Paunu ◽  
Steve R. Arnold ◽  
Sabine Eckhardt ◽  
...  

Abstract. In recent years, the pan-Arctic region has experienced increasingly extreme fire seasons. Fires in the northern high latitudes are driven by current and future climate change, lightning, fuel conditions, and human activity. In this context, conceptualizing and parameterizing current and future Arctic fire regimes will be important for fire and land management as well as understanding current and predicting future fire emissions. The objectives of this review were driven by policy questions identified by the Arctic Monitoring and Assessment Programme (AMAP) Working Group and posed to its Expert Group on Short-Lived Climate Forcers. This review synthesizes current understanding of the changing Arctic and boreal fire regimes, particularly as fire activity and its response to future climate change in the pan-Arctic have consequences for Arctic Council states aiming to mitigate and adapt to climate change in the north. The conclusions from our synthesis are the following. (1) Current and future Arctic fires, and the adjacent boreal region, are driven by natural (i.e. lightning) and human-caused ignition sources, including fires caused by timber and energy extraction, prescribed burning for landscape management, and tourism activities. Little is published in the scientific literature about cultural burning by Indigenous populations across the pan-Arctic, and questions remain on the source of ignitions above 70∘ N in Arctic Russia. (2) Climate change is expected to make Arctic fires more likely by increasing the likelihood of extreme fire weather, increased lightning activity, and drier vegetative and ground fuel conditions. (3) To some extent, shifting agricultural land use and forest transitions from forest–steppe to steppe, tundra to taiga, and coniferous to deciduous in a warmer climate may increase and decrease open biomass burning, depending on land use in addition to climate-driven biome shifts. However, at the country and landscape scales, these relationships are not well established. (4) Current black carbon and PM2.5 emissions from wildfires above 50 and 65∘ N are larger than emissions from the anthropogenic sectors of residential combustion, transportation, and flaring. Wildfire emissions have increased from 2010 to 2020, particularly above 60∘ N, with 56 % of black carbon emissions above 65∘ N in 2020 attributed to open biomass burning – indicating how extreme the 2020 wildfire season was and how severe future Arctic wildfire seasons can potentially be. (5) What works in the boreal zones to prevent and fight wildfires may not work in the Arctic. Fire management will need to adapt to a changing climate, economic development, the Indigenous and local communities, and fragile northern ecosystems, including permafrost and peatlands. (6) Factors contributing to the uncertainty of predicting and quantifying future Arctic fire regimes include underestimation of Arctic fires by satellite systems, lack of agreement between Earth observations and official statistics, and still needed refinements of location, conditions, and previous fire return intervals on peat and permafrost landscapes. This review highlights that much research is needed in order to understand the local and regional impacts of the changing Arctic fire regime on emissions and the global climate, ecosystems, and pan-Arctic communities.


2021 ◽  
Author(s):  
Marion Genet ◽  
Anne-Laure Daniau ◽  
Maria-Angela Bassetti ◽  
Bassem Jallali ◽  
Marie-Alexandrine Sicre ◽  
...  

<p>Nowadays, the Mediterranean region is strongly impacted by fires. Projected warming scenarios suggest increasing fire risk in this region considered as hot-spot of the climate change (Liu et al., 2010; Pechony and Shindell, 2010). However, models based on modern-day statistical relationships do not properly account for interactions between climate, vegetation, and fire. In addition, process-based models must be tested not only against modern observations but also under different past climate conditions reflecting the range of climate variability projected for the next centuries (Hantson et al. 2016). Marine sediments are a major source of fire history of nearby land masses. Here, we present a unique 8,500 yr long record of biomass burning changes from southeastern France based on a marine microcharcoal sedimentary record from the Gulf of Lion, located in the subaqueous Rhone river delta. Sediment delivery to the Gulf of Lion comes mainly from the Rhône River draining a large watershed in southeast France (ca.100,000 km2). Due to the direction of dominant winds blowing from the North-North-West (Mistral and Tramontane) and carrying fine particles from the land to the sea, the microcharcoal record likely reflects the biomass burning in the Rhone watershed and South-East of France. Our results show multi-centennial to millennial changes in biomass burning with a periodicity  of 1000 years for the full record and between 500 and 700 years before 5,000 cal BP and after 3,000 cal BP. Large peaks of biomass burning are associated with marked dry periods observed in the region. Burning of biomass is higher when the region is dominated by xerophytic vegetation than when mesophyte vegetation dominates. The trend and periodicity of the biomass burning record suggest a predominant climatic control of fire occurrences since 8,500 cal BP in this region.</p>


2020 ◽  
Vol 9 (5) ◽  
pp. 333
Author(s):  
Nicole C. Inglis ◽  
Jelena Vukomanovic

Fire management in protected areas faces mounting obstacles as climate change alters disturbance regimes, resources are diverted to fighting wildfires, and more people live along the boundaries of parks. Evidence-based prescribed fire management and improved communication with stakeholders is vital to reducing fire risk while maintaining public trust. Numerous national fire databases document when and where natural, prescribed, and human-caused fires have occurred on public lands in the United States. However, these databases are incongruous and non-standardized, making it difficult to visualize spatiotemporal patterns of fire and engage stakeholders in decision-making. We created interactive decision analytics (“VISTAFiRe”) that transform fire history data into clear visualizations of the spatial and temporal dimensions of fire and its management. We demonstrate the utility of our approach using Big Cypress National Preserve and Everglades National Park as examples of protected areas experiencing fire regime change between 1980 and 2017. Our open source visualizations may be applied to any data from the National Park Service Wildland Fire Events Geodatabase, with flexibility to communicate shifts in fire regimes over time, such as the type of ignition, duration and magnitude, and changes in seasonal occurrence. Application of the tool to Everglades and Big Cypress revealed that natural wildfires are occurring earlier in the wildfire season, while human-caused and prescribed wildfires are becoming less and more common, respectively. These new avenues of stakeholder communication are allowing the National Park Service to devise research plans to prepare for environmental change, guide resource allocation, and support decision-making in a clear and timely manner.


Fire ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 49
Author(s):  
Nunzio Romano ◽  
Nadia Ursino

Frequent and severe droughts typically intensify wildfires provided that there is enough fuel in situ. The extent to which climate change may influence the fire regime and long time-scale hydrological processes may soften the effect of inter-annual climate change and, more specifically, whether soil-water retention capacity can alleviate the harsh conditions resulting from droughts and affect fire regimes, are still largely unexplored matters. The research presented in this paper is a development of a previous investigation and shows in what way, and to what extent, rainfall frequency, dry season length, and hydraulic response of different soil types drive forest fires toward different regimes while taking into consideration the typical seasonality of the Mediterranean climate. The soil-water holding capacity, which facilitates biomass growth in between fire events and hence favors fuel production, may worsen the fire regime as long dry summers become more frequent, such that the ecosystem’s resilience to climate shifts may eventually be undermined.


2014 ◽  
Vol 23 (7) ◽  
pp. 959 ◽  
Author(s):  
Larissa L. Yocom ◽  
Peter Z. Fulé ◽  
Donald A. Falk ◽  
Celia García-Domínguez ◽  
Eladio Cornejo-Oviedo ◽  
...  

We investigated the influence of broad- v. fine-scale factors on fire in an unusual landscape suitable for distinguishing the drivers of fire synchrony. Our study was conducted in the Sierra Madre Oriental mountain range, in north-eastern Mexico. We worked in nine sites on three parallel mountains that receive nearly identical broad-scale climatic influence, but between which fires are unlikely to spread. We collected and cross dated samples from 357 fire-scarred trees in nine sites in high-elevation mixed-conifer forests and identified fire dates. We used Jaccard similarity analysis to evaluate synchrony among sites and quantified relationships between climate and fire occurrence. Fires were historically frequent (mean fire interval ranged from 8 to 16 years in all sites) and dates of fire exclusion ranged from 1887 to 1962. We found low fire synchrony among the three mountains, indicating a strong influence of fine-scale factors on fire occurrence. Fire regime attributes were similar across mountains despite the independence of fire dates. La Niña events were associated with fire over time, although not significantly since the 1830s. Our results highlight the importance of scale in describing fire regimes and suggest that we can use fire history to understand controls on complex ecosystem processes and patterns.


Sign in / Sign up

Export Citation Format

Share Document