scholarly journals Reactive oxygen-derived free radicals are key to the endothelial dysfunction of diabetes

2009 ◽  
Vol 1 (3) ◽  
pp. 151-162 ◽  
Author(s):  
Yi SHI ◽  
Paul Michel VANHOUTTE
2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


Redox Report ◽  
2013 ◽  
Vol 18 (3) ◽  
pp. 95-99 ◽  
Author(s):  
Giuseppe Murdaca ◽  
Francesca Spanò ◽  
Paola Cagnati ◽  
Francesco Puppo

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Gabriel Sigmund ◽  
Cristina Santín ◽  
Marc Pignitter ◽  
Nathalie Tepe ◽  
Stefan H. Doerr ◽  
...  

AbstractGlobally landscape fires produce about 256 Tg of pyrogenic carbon or charcoal each year. The role of charcoal as a source of environmentally persistent free radicals, which are precursors of potentially harmful reactive oxygen species, is poorly constrained. Here, we analyse 60 charcoal samples collected from 10 wildfires, that include crown as well as surface fires in forest, shrubland and grassland spanning different boreal, temperate, subtropical and tropical climate. Using electron spin resonance spectroscopy, we measure high concentrations of environmentally persistent free radicals in charcoal samples, much higher than those found in soils. Concentrations increased with degree of carbonization and woody fuels favoured higher concentrations. Moreover, environmentally persistent free radicals remained stable for an unexpectedly long time of at least 5 years. We suggest that wildfire charcoal is an important global source of environmentally persistent free radicals, and therefore potentially of harmful reactive oxygen species.


Microsurgery ◽  
2002 ◽  
Vol 22 (3) ◽  
pp. 108-113 ◽  
Author(s):  
Rolf Büttemeyer ◽  
Andreas W. Philipp ◽  
Julian W. Mall ◽  
Bixia Ge ◽  
Frieder W. Scheller ◽  
...  

Author(s):  
Na Gao ◽  
Jing Jing ◽  
Hengzhi Zhao ◽  
Yazhou Liu ◽  
Chunlei Yang ◽  
...  

Oxidative stress plays an important role in the development of inflammatory diseases including allergy, heart disease, diabetes and cancer. Nanomaterials-mediated antioxidant therapy is regarded as a promising strategy to treat...


Sign in / Sign up

Export Citation Format

Share Document