SUMOylation during nuclear degradation in lens fibre cells

2008 ◽  
Vol 86 ◽  
pp. 0-0
Author(s):  
AR PRESCOTT
2004 ◽  
Vol 3 (6) ◽  
pp. 1653-1663 ◽  
Author(s):  
Sherif Ganem ◽  
Shun-Wen Lu ◽  
Bee-Na Lee ◽  
David Yu-Te Chou ◽  
Ruthi Hadar ◽  
...  

ABSTRACT Previous work established that mutations in mitogen-activated protein (MAP) kinase (CHK1) and heterotrimeric G-protein α (Gα) subunit (CGA1) genes affect the development of several stages of the life cycle of the maize pathogen Cochliobolus heterostrophus. The effects of mutating a third signal transduction pathway gene, CGB1, encoding the Gβ subunit, are reported here. CGB1 is the sole Gβ subunit-encoding gene in the genome of this organism. cgb1 mutants are nearly wild type in vegetative growth rate; however, Cgb1 is required for appressorium formation, female fertility, conidiation, regulation of hyphal pigmentation, and wild-type virulence on maize. Young hyphae of cgb1 mutants grow in a straight path, in contrast to those of the wild type, which grow in a wavy pattern. Some of the phenotypes conferred by mutations in CGA1 are found in cgb1 mutants, suggesting that Cgb1 functions in a heterotrimeric G protein; however, there are also differences. In contrast to the deletion of CGA1, the loss of CGB1 is not lethal for ascospores, evidence that there is a Gβ subunit-independent signaling role for Cga1 in mating. Furthermore, not all of the phenotypes conferred by mutations in the MAP kinase CHK1 gene are found in cgb1 mutants, implying that the Gβ heterodimer is not the only conduit for signals to the MAP kinase CHK1 module. The additional phenotypes of cgb1 mutants, including severe loss of virulence on maize and of the ability to produce conidia, are consistent with CGB1 being unique in the genome. Fluorescent DNA staining showed that there is often nuclear degradation in mature hyphae of cgb1 mutants, while comparable wild-type cells have intact nuclei. These data may be genetic evidence for a novel cell death-related function of the Gβ subunit in filamentous fungi.


2011 ◽  
Vol 366 (1568) ◽  
pp. 1250-1264 ◽  
Author(s):  
Steven Bassnett ◽  
Yanrong Shi ◽  
Gijs F. J. M. Vrensen

The purpose of the lens is to project a sharply focused, undistorted image of the visual surround onto the neural retina. The first pre-requisite, therefore, is that the tissue should be transparent. Despite the presence of remarkably high levels of protein, the lens cytosol remains transparent as a result of short-range-order interactions between the proteins. At a cellular level, the programmed elimination of nuclei and other light-scattering organelles from cells located within the pupillary space contributes directly to tissue transparency. Scattering at the cell borders is minimized by the close apposition of lens fibre cells facilitated by a plethora of adhesive proteins, some expressed only in the lens. Similarly, refractive index matching between lens membranes and cytosol is believed to minimize scatter. Refractive index matching between the cytoplasm of adjacent cells is achieved through the formation of cellular fusions that allow the intermingling of proteins. Together, these structural adaptations serve to minimize light scatter and enable this living, cellular structure to function as ‘biological glass’.


2002 ◽  
Vol 16 (3) ◽  
pp. 420-422 ◽  
Author(s):  
Troy R. Shirangi ◽  
Alex Zaika ◽  
Ute M. Moll

1993 ◽  
Vol 13 (10) ◽  
pp. 6180-6189 ◽  
Author(s):  
M H Malim ◽  
B R Cullen

Although a great deal is known about the regulation of gene expression in terms of transcription, relatively little is known about the modulation of pre-mRNA processing. In this study, we exploited a genetically regulated system, human immunodeficiency virus type 1 (HIV-1) and its trans-activator Rev, to examine events that occur between the synthesis of pre-mRNA in the nucleus and the translation of mRNA in the cytoplasm. Unlike the majority of eukaryotic pre-mRNAs whose introns are efficiently recognized and spliced prior to nucleocytoplasmic transport, HIV-1 mRNAs containing functional introns must be exported to the cytoplasm for the expression of many viral proteins. Using human T cells containing stably integrated proviruses, we demonstrate that such incompletely spliced viral mRNAs are exported to the cytoplasm only in the presence of the Rev trans-activator. In the absence of Rev, these intron-containing RNAs are sequestered in the T-cell nucleus and either spliced or, more commonly, degraded. Because Rev does not inhibit the expression of fully spliced viral mRNA species in T cells, we propose that Rev, rather than inhibiting viral pre-mRNA splicing, is acting here both to prevent the nuclear degradation of HIV-1 pre-mRNAs and to induce their translocation to the cytoplasm. Taken together, these findings indicate that the cellular factors responsible for the nuclear retention of unspliced pre-mRNAs, although most probably splicing factors, do not invariably commit these RNAs to productive splicing and can, instead, program such transcripts for degradation.


1988 ◽  
Vol 91 (3) ◽  
pp. 415-421 ◽  
Author(s):  
J. Kistler ◽  
S. Bullivant

MIP and MP70 are putative gap junction components in the plasma membranes of the mammalian lens fibre cells. We show now that MP70 can be solubilized separately from MIP in mild detergent solutions, and that this treatment results in the dissociation of the fibre gap junctions. Solubilized MP70 was isolated as 16.9 S particles by velocity gradient centrifugation and in the electron microscope had the appearance of short double-membrane structures consistent with connexon-pairs. These observations open a new experimental avenue in which to characterize separately the two putative lens gap junction proteins structurally and functionally.


2019 ◽  
Vol 98 (5) ◽  
pp. 813-825 ◽  
Author(s):  
Borja Belda‐Palazon ◽  
Jose Julian ◽  
Alberto Coego ◽  
Qian Wu ◽  
Xu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document