Clinical Diagnosis of West Nile Fever in Equids by Classification and Regression Tree (CART) Analysis and Comparative Study of Clinical Appearance in Three European Countries

2011 ◽  
Vol 58 (3) ◽  
pp. 197-205 ◽  
Author(s):  
R. S. Porter ◽  
A. Leblond ◽  
S. Lecollinet ◽  
P. Tritz ◽  
C. Cantile ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kaizhou Huang ◽  
Feiyang Ji ◽  
Zhongyang Xie ◽  
Daxian Wu ◽  
Xiaowei Xu ◽  
...  

Abstract Artificial liver support systems (ALSS) are widely used to treat patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). The aims of the present study were to investigate the subgroups of patients with HBV-ACLF who may benefit from ALSS therapy, and the relevant patient-specific factors. 489 ALSS-treated HBV-ACLF patients were enrolled, and served as derivation and validation cohorts for classification and regression tree (CART) analysis. CART analysis identified three factors prognostic of survival: hepatic encephalopathy (HE), prothrombin time (PT), and total bilirubin (TBil) level; and two distinct risk groups: low (28-day mortality 10.2–39.5%) and high risk (63.8–91.1%). The CART model showed that patients lacking HE and with a PT ≤ 27.8 s and a TBil level ≤455 μmol/L experienced less 28-day mortality after ALSS therapy. For HBV-ACLF patients with HE and a PT > 27.8 s, mortality remained high after such therapy. Patients lacking HE with a PT ≤ 27.8 s and TBil level ≤ 455 μmol/L may benefit markedly from ALSS therapy. For HBV-ACLF patients at high risk, unnecessary ALSS therapy should be avoided. The CART model is a novel user-friendly tool for screening HBV-ACLF patient eligibility for ALSS therapy, and will aid clinicians via ACLF risk stratification and therapeutic guidance.


Archaea ◽  
2008 ◽  
Vol 2 (3) ◽  
pp. 159-167 ◽  
Author(s):  
Betsey Dexter Dyer ◽  
Michael J. Kahn ◽  
Mark D. LeBlanc

Classification and regression tree (CART) analysis was applied to genome-wide tetranucleotide frequencies (genomic signatures) of 195 archaea and bacteria. Although genomic signatures have typically been used to classify evolutionary divergence, in this study, convergent evolution was the focus. Temperature optima for most of the organisms examined could be distinguished by CART analyses of tetranucleotide frequencies. This suggests that pervasive (nonlinear) qualities of genomes may reflect certain environmental conditions (such as temperature) in which those genomes evolved. The predominant use of GAGA and AGGA as the discriminating tetramers in CART models suggests that purine-loading and codon biases of thermophiles may explain some of the results.


2021 ◽  
pp. 1-10
Author(s):  
Pragya Kumari ◽  
Gajendra K. Vishwakarma ◽  
Atanu Bhattacharjee

BACKGROUND: HER2, ER, PR, and ERBB2 play a vital role in treating breast cancer. These are significant predictive and prognosis biomarkers of breast cancer. OBJECTIVE: We aim to obtain a unique biomarker-specific prediction on overall survival to know their survival and death risk. METHODS: Survival analysis is performed on classified data using Classification and Regression Tree (CART) analysis. Hazard ratio and Confidence Interval are computed using MLE and the Bayesian approach with the CPH model for univariate and multivariable illustrations. Validation of CART is executed with the Brier score, and accuracy and sensitivity are obtained using the k-nn classifier. RESULTS: Utilizing CART analysis, the cut-off value of continuous-valued biomarkers HER2, ER, PR, and ERBB2 are obtained as 14.707, 8.128, 13.153, and 6.884, respectively. Brier score of CART is 0.16 towards validation of methodology. Survival analysis gives a demonstration of the survival estimates with significant statistical strategies. CONCLUSIONS: Patients with breast cancer are at low risk of death, whose HER2 value is below its cut-off value, and ER, PR, and ERBB2 values are greater than their cut-off values. This comparison is with the patient having the opposite side of these cut-off values for the same biomarkers.


Author(s):  
Yu Iwabuchi ◽  
Masashi Kameyama ◽  
Yohji Matsusaka ◽  
Hidetoshi Narimatsu ◽  
Masahiro Hashimoto ◽  
...  

Abstract Purpose We aimed to evaluate the diagnostic performances of quantitative indices obtained from dopamine transporter (DAT) single-photon emission computed tomography (SPECT) and 123I-metaiodobenzylguanidine (MIBG) scintigraphy for Parkinsonian syndromes (PS) using the classification and regression tree (CART) analysis. Methods We retrospectively enrolled 216 patients with or without PS, including 80 without PS (NPS) and 136 with PS [90 Parkinson’s disease (PD), 21 dementia with Lewy bodies (DLB), 16 progressive supranuclear palsy (PSP), and 9 multiple system atrophy (MSA). The striatal binding ratio (SBR), putamen-to-caudate ratio (PCR), and asymmetry index (AI) were calculated using DAT SPECT. The heart-to-mediastinum uptake ratio (H/M) based on the early (H/M [Early]) and delayed (H/M [Delay]) images and cardiac washout rate (WR) were calculated from MIBG scintigraphy. The CART analysis was used to establish a diagnostic decision tree model for differentiating PS based on these quantitative indices. Results The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 87.5, 96.3, 93.3, 92.9, and 93.1 for NPS; 91.1, 78.6, 75.2, 92.5, and 83.8 for PD; 57.1, 95.9, 60.0, 95.4, and 92.1 for DLB; and 50.0, 98.0, 66.7, 96.1, and 94.4 for PSP, respectively. The PCR, WR, H/M (Delay), and SBR indices played important roles in the optimal decision tree model, and their feature importance was 0.61, 0.22, 0.11, and 0.05, respectively. Conclusion The quantitative indices showed high diagnostic performances in differentiating NPS, PD, DLB, and PSP, but not MSA. Our findings provide useful guidance on how to apply these quantitative indices in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document