Chemical and physical studies of type 3 chondrites XII: The metamorphic history of CV chondrites and their components

Meteoritics ◽  
1995 ◽  
Vol 30 (6) ◽  
pp. 704-714 ◽  
Author(s):  
R. Kyle Guimon ◽  
Steven J. K. Symes ◽  
Derek W. G. Sears ◽  
Paul H. Benoit
1985 ◽  
Vol 49 (7) ◽  
pp. 1515-1524 ◽  
Author(s):  
R.Kyle Guimon ◽  
Bradly D. Keck ◽  
Karen S. Weeks ◽  
John DeHart ◽  
Derek W.G. Sears

2007 ◽  
Vol 20 (1-2) ◽  
pp. 99-118 ◽  
Author(s):  
Nicola Levi ◽  
Alessandro Malasoma ◽  
Michele Marroni ◽  
Luca Pandolfi ◽  
Matteo Paperini

2018 ◽  
Vol 55 (9) ◽  
pp. 1063-1078 ◽  
Author(s):  
Michelle J. Markley ◽  
Steven R. Dunn ◽  
Michael J. Jercinovic ◽  
William H. Peck ◽  
Michael L. Williams

The Central Metasedimentary Belt boundary zone (CMBbz) is a crustal-scale shear zone that juxtaposes the Central Gneiss Belt and the Central Metasedimentary Belt of the Grenville Province. Geochronological work on the timing of deformation and metamorphism in the CMBbz is ambiguous, and the questions that motivate our study are: how many episodes of shear zone activity did the CMBbz experience, and what is the tectonic significance of each episode? We present electron microprobe data from monazite (the U–Th–Pb chemical method) to directly date deformation and metamorphism recorded in five garnet–biotite gneiss samples collected from three localities of the CMBbz of Ontario (West Guilford, Fishtail Lake, and Killaloe). All three localities yield youngest monazite dates ca. 1045 Ma; most of the monazite domains that yield these dates are high-Y rims. In comparison with this common late Ottawan history, the earlier history of the three CMBbz localities is less clearly shared. The West Guilford samples have monazite grain cores that show older high-Y domains and younger low-Y domains; these cores yield a prograde early Ottawan (1100–1075 Ma) history. The Killaloe samples yield a well-defined prograde, pre- to early Shawinigan history (i.e., 1220–1160 Ma) in addition to some evidence for a second early Ottawan event. In other words, the answers to our research questions are: three events; a Shawinigan event possibly associated with crustal thickening, an Ottawan event possibly associated with another round of crustal thickening, and a late Ottawan event that resists simple interpretation in terms of metamorphic history but that coincides chronologically with crustal thinning at the base of an orogenic lid.


2011 ◽  
Vol 48 (2) ◽  
pp. 205-245 ◽  
Author(s):  
L. M. Heaman ◽  
Ch. O. Böhm ◽  
N. Machado ◽  
T. E. Krogh ◽  
W. Weber ◽  
...  

The Pikwitonei Granulite Domain located at the northwestern margin of the Superior Province is one of the largest Neoarchean high-grade terranes in the world, with well-preserved granulite metamorphic assemblages preserved in a variety of lithologies, including enderbite, opdalite, charnockite, and mafic granulite. U–Pb geochronology has been attempted to unravel the protolith ages and metamorphic history of numerous lithologies at three main localities; Natawahunan Lake, Sipiwesk Lake, and Cauchon Lake. The U–Pb age results indicate that some of the layered enderbite gneisses are Mesoarchean (3.4–3.0 Ga) and the more massive enderbites are Neoarchean. The high-grade metamorphic history of the Pikwitonei Granulite Domain is complex and multistage with at least four episodes of metamorphic zircon growth identified: (1) 2716.1 ± 3.8 Ma, (2) 2694.6 ± 0.6 Ma, (3) 2679.6 ± 0.9 Ma, and (4) 2642.5 ± 0.9 Ma. Metamorphic zircon growth during episodes 2 and 3 are interpreted to be regional in extent, corresponding to M1 amphibolite- and M2 granulite-facies events, respectively, consistent with previous field observations. The youngest metamorphic episode at 2642.5 Ma is only recognized at southern Cauchon Lake, where it coincides with granite melt production and possible development of a major northeast-trending deformation zone. The timing and multistage metamorphic history recorded in the Pikwitonei Granulite Domain is similar to most Superior Province high-grade terranes and marks a fundamental break in Archean crustal evolution worldwide at the termination of prolific global Neoarchean greenstone belt formation.


2012 ◽  
Vol 220-221 ◽  
pp. 23-44 ◽  
Author(s):  
Jonathan O’Neil ◽  
Richard W. Carlson ◽  
Jean-Louis Paquette ◽  
Don Francis

2021 ◽  
Author(s):  
Taylor Ducharme ◽  
Iwona Klonowska ◽  
David Schneider ◽  
Bernhard Grasemann ◽  
Kostantinos Soukis

<p>Southern Evia in Greece exposes an inverted high pressure-low temperature (HP-LT) metamorphic sequence that has been loosely correlated with the Cycladic Blueschist Unit (CBU). On the island, the CBU is divided into the metavolcanic and ophiolitic Ochi Nappe and predominantly metacarbonate Styra Nappe. A lower-grade unit, the Almyropotamos Nappe, is exposed in the core of a N-S trending antiform and comprises Eocene platform carbonates overlain by metaflysch. The Almyropotamos Nappe occupies a tectonic window defined by the Evia Thrust, a brittle-ductile fault zone that emplaced the Ochi and Styra nappes atop the Almyropotamos Nappe. New multiple single-grain white mica total fusion <sup>40</sup>Ar/<sup>39</sup>Ar ages indicate that deformation occurred along the Evia Thrust at 25-23 Ma. White mica <sup>40</sup>Ar/<sup>39</sup>Ar data on either side of the tectonic window record Eocene dates between 40 and 32 Ma, consistent with previously published <sup>40</sup>Ar/<sup>39</sup>Ar dates and a single Rb-Sr age of c. 30 Ma. These ages broadly coincide with estimates for the timing of NE-directed thrusting of the Ochi Nappe over the Styra Nappe. Strain associated with thrusting localized as cylindrical folds in Styra marbles, with fold axes parallel to the stretching lineation and a clear strain gradient increasing toward the upper contact with the Ochi Nappe. The most prominent structures in the Ochi Nappe are a strong L-S fabric defined by acicular blue amphibole and type-3 refold structures with fold axes trending parallel to the NE-SW oriented stretching lineation. Whereas the Ochi Nappe and Styra Nappe locally preserve peak blueschist facies mineral assemblages, all three units commonly display evidence only for retrogressed initial HP-LT assemblages in the form of ferroglaucophane inclusions in albite porphyroblasts. Isochemical phase diagrams calculated in the Na<sub>2</sub>O-CaO-K<sub>2</sub>O-FeO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O-TiO<sub>2</sub>±O<sub>2</sub> system support minimum peak metamorphic conditions of 12.5 ± 1.5 kbar and 465 ± 75 °C for an Ochi Nappe blueschist, and 6.0 ± 0.5 kbar and 315 ± 15 °C for an albite mica schist from the Evia Thrust. Peak P-T conditions for the Ochi Nappe support a metamorphic history more closely resembling that of the Lower Cycladic Blueschist Nappe, indicating that the entire section of the CBU exposed on Evia lies below the Trans-Cycladic Thrust. The Early Miocene ages from the Evia Thrust overlap with the proposed timing for the initiation of bivergent greenschist facies extension in the Cyclades. The remainder of the region, including high-strain corridors within individual nappes such as the Almyropotamos Thrust, uniformly records Eocene deformation ages. The similarity in <sup>40</sup>Ar/<sup>39</sup>Ar ages across the tectonic window contrasts with age relationships observed in similar tectonic packages on Lavrion, and suggests that regional scale deformation persisted until the Late Eocene before strain became localized in brittle-ductile corridors by the Early Miocene. </p>


Sign in / Sign up

Export Citation Format

Share Document