scholarly journals Monazite U–Th–Pb geochronology of the Central Metasedimentary Belt Boundary Zone (CMBbz), Grenville Province, Ontario Canada

2018 ◽  
Vol 55 (9) ◽  
pp. 1063-1078 ◽  
Author(s):  
Michelle J. Markley ◽  
Steven R. Dunn ◽  
Michael J. Jercinovic ◽  
William H. Peck ◽  
Michael L. Williams

The Central Metasedimentary Belt boundary zone (CMBbz) is a crustal-scale shear zone that juxtaposes the Central Gneiss Belt and the Central Metasedimentary Belt of the Grenville Province. Geochronological work on the timing of deformation and metamorphism in the CMBbz is ambiguous, and the questions that motivate our study are: how many episodes of shear zone activity did the CMBbz experience, and what is the tectonic significance of each episode? We present electron microprobe data from monazite (the U–Th–Pb chemical method) to directly date deformation and metamorphism recorded in five garnet–biotite gneiss samples collected from three localities of the CMBbz of Ontario (West Guilford, Fishtail Lake, and Killaloe). All three localities yield youngest monazite dates ca. 1045 Ma; most of the monazite domains that yield these dates are high-Y rims. In comparison with this common late Ottawan history, the earlier history of the three CMBbz localities is less clearly shared. The West Guilford samples have monazite grain cores that show older high-Y domains and younger low-Y domains; these cores yield a prograde early Ottawan (1100–1075 Ma) history. The Killaloe samples yield a well-defined prograde, pre- to early Shawinigan history (i.e., 1220–1160 Ma) in addition to some evidence for a second early Ottawan event. In other words, the answers to our research questions are: three events; a Shawinigan event possibly associated with crustal thickening, an Ottawan event possibly associated with another round of crustal thickening, and a late Ottawan event that resists simple interpretation in terms of metamorphic history but that coincides chronologically with crustal thinning at the base of an orogenic lid.

2005 ◽  
Vol 42 (10) ◽  
pp. 1907-1925 ◽  
Author(s):  
N Culshaw

Low-plunging, transport-parallel F3 folds are common at all scales in the Central Gneiss Belt of the Grenville Province, but few of these folds are sheath folds. Where the D1–D2 Parry Sound shear zone intersects the D3 Shawanaga shear zone (SSZ) at a high angle, F3 folds formed at several scales (centimetre to greater than outcrop scale) in layered D1–D2 "straight" gneisses. At the start of their evolution, the F3 folds formed just beyond the SSZ with hinges near orthogonal to the D3 shear direction and with typical buckle features, e.g., wavelengths vary with layer thickness, and hinges are discontinuous and bifurcate. The buckle folds evolved within the SSZ by rotation of hinges towards the shear direction. Even though hinges initiated at a high angle to the shear direction, sheath folds were not produced. In addition to tightening the buckles, the ductile reorientation produced thin–thick (extended–shortened) limb pairs and very straight, ridge-like fold hinges and removed small folds from the extended limbs of larger folds. Such features may serve as criteria to distinguish transport-parallel folds that initiated in layering at high angles to the shear direction from those formed in layers containing the shear direction. A general shear parallel to the SSZ can reproduce several features inferred to mark stages in the progressive reorientation of the folds; the pure shear component of the general shear is inferred to have had a positive stretch direction down the dip of the shear zone, at a high angle to the transport (simple shear) direction. The interplay of buckling and shearing in the study area is, plausibly, the expression of deformation at the upper boundary of a channel-like flow that succeeded initial crustal thickening.


2015 ◽  
Vol 257 ◽  
pp. 22-46 ◽  
Author(s):  
Renaud Soucy La Roche ◽  
Félix Gervais ◽  
Alain Tremblay ◽  
James L. Crowley ◽  
Gilles Ruffet

2021 ◽  
Vol 58 (1) ◽  
pp. 21-37
Author(s):  
Erik Duesterhoeft ◽  
Peter Raase ◽  
Manuel Duguet ◽  
Robert Michael Easton

The Bancroft terrane and the associated Central Metasedimentary Belt boundary thrust zone represent the northern part of the Central Metasedimentary Belt (CMB) of the Canadian Grenville Province. Only a few direct pressure and temperature calculations based on phase equilibrium petrology methods exist in the central Bancroft terrane, and this study applies thermodynamic approaches such as garnet isopleth geothermobarometry to fill this gap and investigate the metamorphic history of the northern CMB. Four metapelitic rock samples were collected in the vicinity of the enigmatic Bancroft shear zone, which approximates the border between the Bancroft terrane and the Elzevir terrane to the south. Garnet isopleths for these samples only intersect if a certain amount of excess oxygen is added to the bulk rock composition corresponding to a Fe3+/Fetot ratio of 0.33–0.38. The northernmost sample records metamorphic peak conditions of approximately 1 GPa and 780 °C, whereas the southernmost sample, which is located in the Elzevir terrane, records a peak metamorphic pressure of approximately 0.9 GPa at a temperature of 520 °C. The latter result contradicts previous pressure estimates of the region and the proposed metamorphic field gradient but is based on a poorly constrained sample in terms of thermodynamic modeling. Hence, we conclude that the metamorphic field gradient in the northern CMB conceals two different P–T trajectories. Such a scenario is commonly observed in crustal thickening models and suggests that the cold upper plate (Elzevir terrane) was thrust over the warm lower plate (Bancroft terrane) in a northwesterly direction.


Geology ◽  
2021 ◽  
Author(s):  
Adam Brudner ◽  
Hehe Jiang ◽  
Xu Chu ◽  
Ming Tang

The Grenville Province on the eastern margin of Laurentia is a remnant of a Mesoproterozoic orogenic plateau that comprised the core of the ancient supercontinent Rodinia. As a protracted Himalayan-style orogen, its orogenic history is vital to understanding Mesoproterozoic tectonics and paleoenvironmental evolution. In this study, we compared two geochemical proxies for crustal thickness: whole-rock [La/Yb]N ratios of intermediate-to-felsic rocks and europium anomalies (Eu/Eu*) in detrital zircons. We compiled whole-rock geochemical data from 124 plutons in the Laurentian Grenville Province and collected trace-element and geochronological data from detrital zircons from the Ottawa and St. Lawrence River (Canada) watersheds. Both proxies showed several episodes of crustal thickening and thinning during Grenvillian orogenesis. The thickest crust developed in the Ottawan phase (~60 km at ca. 1080 Ma and ca. 1045 Ma), when the collision culminated, but it was still up to 20 km thinner than modern Tibet. We speculate that a hot crust and several episodes of crustal thinning prevented the Grenville hinterland from forming a high Tibet-like plateau, possibly due to enhanced asthenosphere-lithosphere interactions in response to a warm mantle beneath a long-lived supercontinent, Nuna-Rodinia.


Author(s):  
William H Peck ◽  
Matthew P Quinan

The Morin terrane is an allochthonous crustal block in the southwestern Grenville Province with a relatively poorly-constrained metamorphic history. In this part of the Grenville Province, some terranes were part of the ductile middle crust during the 1.09–1.02 Ga collision of Laurentia with the Amazon craton (the Ottawan phase of the Grenvillian orogeny), while other terranes were part of the orogen’s superstructure. New U-Pb geochronology suggests that the Morin terrane experienced granulite-facies metamorphism during the accretionary Shawinigan orogeny (1.19–1.14 Ga) and again during the Ottawan. Seven zircon samples from the 1.15 Ga Morin anorthosite suite were dated to confirm earlier age determinations, and Ottawan metamorphic rims (1.08–1.07 Ga) were observed in two samples. U-Pb dating of titanite in nine marble samples surrounding the Morin anorthosite suite yielded mixed ages spanning between the Shawinigan and Ottawan metamorphisms (n=7), and predominantly Ottawan ages (n=2). Our results show that Ottawan zircon growth and resetting of titanite ages is spatially heterogeneous in the Morin terrane. Ages with a predominantly Ottawan signature are recognized in the Morin shear zone, which deforms the eastern lobe of the anorthosite, in an overprinted skarn zone on the western side of the massif, and in the Labelle shear zone that marks its western boundary. In the rest of the Morin terrane titanite with Shawinigan ages appear to have been only partially reset during the Ottawan. Further work is needed to better understand the relationship between the character of Ottawan metamorphism and resetting in different parts of the Morin terrane.


1995 ◽  
Vol 32 (4) ◽  
pp. 472-485 ◽  
Author(s):  
C. Holmden ◽  
A. P. Dickin

Nd isotopic mapping in the North Bay area of the Central Gneiss Belt, southwestern Grenville Province, has revealed the precise trend of a TDM model age line developed between the uplifted southern margin of the Archean Superior craton (TDM = 2.7 Ga) and a Paleoproterozoic allochthon (TDM = 1.9 Ga). Separating these two crustal blocks is a narrow zone of gneisses with intermediate TDM ages. These transitional gneisses are interpreted to reflect a remnant fault or ductile shear zone, of uncertain age, along which crustal material from both blocks mechanically mixed during their juxtaposition. Accordingly, the nature of the TDM line in the North Bay area is interpreted to be tectonic. In the Temiscaming area, widespread exposures of mature metasedimentary gneisses are shown by their TDM ages to be dominantly of Paleoproterozoic provenance. These results are consistent with the existing detrital zircon geochronology, inferring a maximum depositional age of ~1.7 Ga. The anorogenic chemistry of the North Bay orthogneiss and mixed calc-alkaline–alkaline chemistry of the Temiscaming gneisses suggest a connection between Paleoproterozoic anorogenic magmatism and synsedimentary quartzite deposition, which is a common association in 1.9–1.6 Ga accretionary orogens of southern Laurentia. The relatively close correspondence between widespread 1.9 Ga TDM ages and U–Pb crystallization ages as old as 1.74 Ga implies that rocks of the Central Gneiss Belt were originally the juvenile products of Paleoproterozoic orogenesis.


1971 ◽  
Vol 8 (11) ◽  
pp. 1495-1498 ◽  
Author(s):  
M. R. Dence ◽  
J. B. Hartung ◽  
J. F. Sutter

Hornblende-rich concentrates from quartz–feldspar gneisses of the Grenville Province near Brent Ontario, have yielded K–Ar apparent ages of 1570 to 1480 ± 80 m.y., while coexisting biotite- and feldspar-rich separates give 'normal' Grenville K–Ar ages near 900 ± 40 m.y. Comparison with the nearest Rb–Sr isochron dates suggests that the indicated hornblende K–Ar age represents a minimum age for time of crystallization of the gneisses in the Brent area and that the younger ages for minerals with lower blocking temperatures indicate a later thermal event in the metamorphic history of the Grenville Province.


2018 ◽  
Vol 55 (6) ◽  
pp. 545-570 ◽  
Author(s):  
Barun Maity ◽  
Aphrodite Indares

The late Paleoproterozoic to Mesoproterozoic (ca. 1.7–1.2 Ga) evolution of the active southeastern margin of Laurentia terminated with the Grenvillian continental collision and the development of a large, hot, long-duration orogen at ca. 1.09–0.98 Ga. As a result, much of the hinterland of the Grenville Province consists of Paleoproterozoic and Mesoproterozoic rocks, mostly preserved as an imbricate stack of high-grade gneisses, that represent a potential repository of active-margin processes. This study presents geochronologic, geochemical, and isotopic analyses of two granulite-facies suites of ca. 1.45–1.40 Ga mafic tholeiites from the Canyon domain (Manicouagan area, central Grenville Province). One suite consists of 1439 +76/–68 Ma high-FeTi mafic sills with εNd values of –0.4 (TDM 2.57–2.72 Ga), indicate derivation from variably depleted to enriched MORB-type mantle sources, probably in an extensional back-arc setting, before intrusion in a ca. 1.5 Ga supracrustal metasedimentary sequence. The other, previously dated, 1410 ± 16 Ma Mafic to intermediate unit exhibits εNd values of 0.0 to +0.9 (TDM 2.02–2.25 Ga), and variably enriched MORB to arc geochemical signatures, for which formation in a transitional back-arc to arc setting is suggested. Integrated with published information, the new data support a model of a long-lived continental-margin arc and intermittent back-arc development on southeast Laurentia during the mid-Mesoproterozoic (ca. 1.5–1.4 Ga), in which repeated short periods of extension and crustal thinning in the back-arc or intra-arc regions were followed by compression and crustal thickening.


Sign in / Sign up

Export Citation Format

Share Document