tectonic window
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 17)

H-INDEX

9
(FIVE YEARS 1)

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1171
Author(s):  
Katarzyna Jarmołowicz-Szulc ◽  
Leszek Jankowski

Quartz, carbonates and other minerals as e.g., realgar are present in veins and caverns in sedimentary rocks in the Western Carpathians. In the Polish segment, they have been characterized from the mineralogical, petrologic, and geochemical points of view, as well as fluid inclusions. Their characters are discussed from perspective of a description of particular types of chaotic complexes—the tectonic mélange zones, distinguished in the Western Carpathian area over the last two decades. The mélange zones are considered to be geochemical systems open to fluid flow, a site for mineral crystallization and/or migration zones of hydrocarbons and mineralized waters. In this context the tectonic mélange in the Jabłonki/Rabe vicinity (SE Poland, the Bieszczady region) in comparison to that of the Mszana Dolna tectonic window area are proposed as the examples. The trapping conditions of fluids (brine and methane) in the minerals in the mélange zones appear to have been 180–205 °C and ~550–570 bars, and 220 °C and 500 bars for calcite and quartz, respectively. The general trend of the increase in temperatures and pressures from west towards east and south-east in the mélange zones points to an increase in the degree of exhumation of different parts of the Carpathians.


2021 ◽  
Author(s):  
John Wakabayashi

ABSTRACT Franciscan subduction complex rocks of Mount Diablo form an 8.5 by 4.5 km tectonic window, elongated E-W and fault-bounded to the north and south by rocks of the Coast Range ophiolite and Great Valley Group, respectively, which lack the burial metamorphism and deformation displayed by the Franciscan complex. Most of the Franciscan complex consists of a stack of lawsonite-albite–facies pillow basalt overlain successively by chert and clastic sedimentary rocks, repeated by faults at hundreds of meters to <1 m spacing. Widely distributed mélange zones from 0.5 to 300 m thick containing high-grade (including amphibolite and eclogite) assemblages and other exotic blocks, up to 120 m size, form a small fraction of exposures. Nearly all clastic rocks have a foliation, parallel to faults that repeat the various lithologies, whereas chert and basalt lack foliation. Lawsonite grew parallel to foliation and as later grains across foliation. The Franciscan-bounding faults, collectively called the Coast Range fault, strike ENE to WNW and dip northward at low to moderate average angles and collectively form a south-vergent overturned anticline. Splays of the Coast Range fault also cut into the Franciscan strata and Coast Range ophiolite and locally form the Coast Range ophiolite–Great Valley Group boundary. Dip discordance between the Coast Range fault and overlying Great Valley Group strata indicates that the northern and southern Coast Range fault segments were normal faults with opposite dip directions, forming a structural dome. These relationships suggest accretion and fault stacking of the Franciscan complex, followed by exhumation along the Coast Range fault and then folding of the Coast Range fault.


2021 ◽  
Vol 10 (8) ◽  
pp. 535
Author(s):  
Ermioni-Eirini Papadopoulou ◽  
Christos Vasilakos ◽  
Nikolaos Zouros ◽  
Nikolaos Soulakellis

Geosites are an important part of geoheritage, thus their detailed mapping is crucial for their management, protection and promotion processes. However, there is no specific approach to three-dimensional (3D) mapping of geosites and a full investigation is required, considering the current advances in the science of Geoinformatics and the need for setting up an integrated system that will suggest a suitable way of mapping areas of geological significance. The main purpose of this study is to explore new approaches to the 3D mapping of geosites, where the unmanned aerial vehicles’ (UAVs) flight planning is based on the digital elevation model (DEM). The case study that is being examined is the tectonic window of Mount Olympus, located in the southeast of Lesvos island, Greece. In this paper, a methodology has been developed to create flight plans for geosite 3D mapping. This methodology consists of three main stages: a) flight planning based on SRTM-DEM, b) data acquisition and image-based 3D modelling, and c) comparison (flight plans and results). A semi-automated algorithm was developed for designing the flights, taking into account the topography of the mapped area (slope, aspect, elevation) and the final cartographic derivatives. The flight plans were compared with each other in levels of data collection, flight characteristics and their results. The results of this study are dense point clouds, DEMs and orthophotomaps. The algorithms that have been used for the comparison of point clouds were I) surface density, II) number of neighbours (NN), and III) roughness and surface profile. The conclusion drawn from this study is that the DEM is a valuable source of information that can be used in designing flight plans specially shaped on the topography of each geosite.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 627
Author(s):  
Yulia Mun ◽  
Sabina Strmić Strmić Palinkaš ◽  
Kåre Kullerud

Metallic mineral deposits represent natural geochemical anomalies of economically valuable commodities but, at the same time, their weathering may have negative environmental implications. Cu-sulfide mineral deposits have been recognized as deposits with a particularly large environmental footprint. However, different Cu deposits may result in significantly different environmental impacts, mostly depending on weathering conditions, but also on geological characteristics (mineralogy, geochemistry, host-rock lithology) of the Cu mineralization. This study presents new mineral and geochemical data from the Repparfjord Tectonic Window sediment-hosted Cu deposits and the Caledonian volcanogenic massive sulfides (VMS) deposits. The deposits share similar mineral features, with chalcopyrite and bornite as the main ore minerals, but they differ according to their trace element composition, gangue mineralogy, and host lithology. The studied sediment-hosted Cu deposits are depleted in most toxic metals and metalloids like Zn, As, Cd, and Hg, whereas the Røros Caledonian VMS mineralization brings elevated concentrations of Zn, Cd, In, Bi, As, and Cd. The conducted leaching experiments were set to simulate on-land and submarine weathering conditions. A high redox potential was confirmed as the main driving force in the destabilization of Cu-sulfides. Galvanic reactions may also contribute to the destabilization of minerals with low rest potentials, like sphalerite and pyrrhotite, even under near-neutral or slightly alkaline conditions. In addition, the presence of carbonates under near-neutral to slightly alkaline conditions may increase the reactivity of Cu sulfides and mobilize Cu, most likely as CuCO3 (aq).


2021 ◽  
Author(s):  
Martin Kralik ◽  
Thomas Zwack ◽  
Christine Stumpp

<p>Aim of the study was to delineate an appropriate wide-ranging drinking water protection zone for the tapped main Walchhof spring, which is part of the public water supply of the small city of Radstadt in the region of Salzburg, Austria. The immediate hydrographic catchment area of the spring was geological mapped, various electric conductivity measurements at the river Taurach and its tributaries were carried out to detect potential high mineralised (SO<sub>4</sub>) karst water influx and fluorescence tracer tests were performed on the adjacent hydrographic catchment area above the tapped main spring. The Walchhof springs discharge approximate 500 L/s in a complex central-alpine setting within a tectonic window structure built of the Radstadt nappe with permeable carbonate rocks overthrusted by the Schladming-Seckau nappe with mostly non-permeable phyllite rocks. To identify the mean altitude of the catchment area and the Mean Residence Time (MRT) of the spring waters a combination of isotopes <sup>2</sup>H/<sup>18</sup>O, <sup>3</sup>H/<sup>3</sup>He, <sup>13</sup>C/<sup>14</sup>C and tracer gases (CFC, SF<sub>6</sub>) was analysed. The <sup>2</sup>H/<sup>18</sup>O-isotopes were analysed on weekly samples during 2019. <sup>3</sup>H/<sup>3</sup>He, <sup>13</sup>C/<sup>14</sup>C and (CFC, SF<sub>6</sub>) were sampled twice in April and October 2019.  The results indicate a wide-ranging hydrogeological catchment area (max. 90km<sup>2</sup>) at a mean altitude of 2000 ± 200 m and a mixture of old (10-20 yrs) and very old (several thousand years) waters. However, heavy rainfall and snow melt events can add (< 10%) very young water (MRT: days-weeks) to the tapped main Walchhof spring. The combination of these methods allows to reduce the wide-ranging drinking water protection zone mainly to the immediate hydrographic catchment area.</p>


2021 ◽  
Author(s):  
Paolo Fulignati ◽  
Martina Zucchi ◽  
Andrea Brogi ◽  
Enrico Capezzuoli ◽  
Domenico Liotta ◽  
...  

<p>In the Iano area (Southern Tuscany) a small tectonic window of Tuscan metamorphic units is observed. This belongs to the northernmost part of the so-called Mid-Tuscan ridge and, during Pliocene, formed a submarine high, now defining the easternmost shoulder of the Volterra Pliocene basin. The area gives the opportunity to investigate the complete cycle of negative inversion from crustal thickening to crustal thinning, which characterizes Southern Tuscany. Our new data focus on the western margin of the Iano ridge, and in particular on a system of high angle normal faults that represents the youngest structures of the investigated area. These structures, deformed low angle regional detachments locally juxtaposing the uppermost units of contractional nappe stack (the ophiolite-bearing Ligurian units), with the Tuscan metamorphic units, with an almost complete excision of at least 3.5 Km thick Mesozoic to Tertiary Tuscan nappe succession. The high angle normal faults show variable Plio-Quaternary vertical displacements from few meters to about 500 meters, and acted as pathways for the upwelling of hydrothermal fluids, as revealed by Pleistocene travertine deposits, hydrothermal alteration and occurrence of different generations of fluid inclusions in hydrothermal veins associated with these fault systems. Fluid inclusions were studied in quartz veins hosted in the Verrucano metasediments forming the top of the Tuscan metamorphic unit, as well as in some carbonate lithotypes (Cretaceous to Tertiary in age) of the overlying Tuscan Nappe. Two different kinds of fluid inclusions were documented. The Type 1 are multiphase (liquid + vapor + 1 daughter mineral) liquid-rich fluid inclusions whereas the Type 2 are two-phase (liquid + vapor) liquid-rich fluid inclusions. Type 1 fluid inclusions are primary in origin and were found only in quartz veins present in Verrucano metarudites, whereas Type 2 fluid inclusions occur in quartz veins present in both Verrucano phyllites and quartzites and in the carbonate units of the Tuscan Nappe. These are secondary and can be furthermore distinguished in two sub-populations (Type 2a and Type 2b) on the basis of petrographic observation and microthermometric data. Fluid inclusion investigation evidenced an evolution of the hydrothermal fluids from relatively high-T (~265°C) and hypersaline (35 wt.% NaCl<sub>equiv.</sub>) fluids trapped at about 100 MPa, to lower temperature (~195°C) and salinity (~9.5 wt.% NaCl<sub>equiv.</sub>) fluids, having circulated in the high-angle fault system. Based on the new data and a revision of the local tectonic setting a fluid-rock interaction history has been reconstructed with new hints and constraints for the Plio-Quaternary extensional history of the Volterra basin.</p>


2021 ◽  
Author(s):  
Taylor Ducharme ◽  
Iwona Klonowska ◽  
David Schneider ◽  
Bernhard Grasemann ◽  
Kostantinos Soukis

<p>Southern Evia in Greece exposes an inverted high pressure-low temperature (HP-LT) metamorphic sequence that has been loosely correlated with the Cycladic Blueschist Unit (CBU). On the island, the CBU is divided into the metavolcanic and ophiolitic Ochi Nappe and predominantly metacarbonate Styra Nappe. A lower-grade unit, the Almyropotamos Nappe, is exposed in the core of a N-S trending antiform and comprises Eocene platform carbonates overlain by metaflysch. The Almyropotamos Nappe occupies a tectonic window defined by the Evia Thrust, a brittle-ductile fault zone that emplaced the Ochi and Styra nappes atop the Almyropotamos Nappe. New multiple single-grain white mica total fusion <sup>40</sup>Ar/<sup>39</sup>Ar ages indicate that deformation occurred along the Evia Thrust at 25-23 Ma. White mica <sup>40</sup>Ar/<sup>39</sup>Ar data on either side of the tectonic window record Eocene dates between 40 and 32 Ma, consistent with previously published <sup>40</sup>Ar/<sup>39</sup>Ar dates and a single Rb-Sr age of c. 30 Ma. These ages broadly coincide with estimates for the timing of NE-directed thrusting of the Ochi Nappe over the Styra Nappe. Strain associated with thrusting localized as cylindrical folds in Styra marbles, with fold axes parallel to the stretching lineation and a clear strain gradient increasing toward the upper contact with the Ochi Nappe. The most prominent structures in the Ochi Nappe are a strong L-S fabric defined by acicular blue amphibole and type-3 refold structures with fold axes trending parallel to the NE-SW oriented stretching lineation. Whereas the Ochi Nappe and Styra Nappe locally preserve peak blueschist facies mineral assemblages, all three units commonly display evidence only for retrogressed initial HP-LT assemblages in the form of ferroglaucophane inclusions in albite porphyroblasts. Isochemical phase diagrams calculated in the Na<sub>2</sub>O-CaO-K<sub>2</sub>O-FeO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O-TiO<sub>2</sub>±O<sub>2</sub> system support minimum peak metamorphic conditions of 12.5 ± 1.5 kbar and 465 ± 75 °C for an Ochi Nappe blueschist, and 6.0 ± 0.5 kbar and 315 ± 15 °C for an albite mica schist from the Evia Thrust. Peak P-T conditions for the Ochi Nappe support a metamorphic history more closely resembling that of the Lower Cycladic Blueschist Nappe, indicating that the entire section of the CBU exposed on Evia lies below the Trans-Cycladic Thrust. The Early Miocene ages from the Evia Thrust overlap with the proposed timing for the initiation of bivergent greenschist facies extension in the Cyclades. The remainder of the region, including high-strain corridors within individual nappes such as the Almyropotamos Thrust, uniformly records Eocene deformation ages. The similarity in <sup>40</sup>Ar/<sup>39</sup>Ar ages across the tectonic window contrasts with age relationships observed in similar tectonic packages on Lavrion, and suggests that regional scale deformation persisted until the Late Eocene before strain became localized in brittle-ductile corridors by the Early Miocene. </p>


2020 ◽  
Vol 28 (4) ◽  
pp. 895-906
Author(s):  
علیرضا Ravankhah ◽  
محسن Moayyed ◽  
غلامرضا Ahmadzadeh ◽  
◽  
◽  
...  

2020 ◽  
Vol 350 ◽  
pp. 105904
Author(s):  
Alan Dickin ◽  
Lucia Krivankova-Smal ◽  
Jacob Strong ◽  
Megan Swing

Sign in / Sign up

Export Citation Format

Share Document