Effect of Ganglionic Blocking Compounds on In-vivo Fluid Secretion in the Rat Small Intestine

1997 ◽  
Vol 49 (11) ◽  
pp. 1109-1113 ◽  
Author(s):  
DICK S. DELBRO ◽  
STEFAN LANGE
1979 ◽  
Vol 41 (1) ◽  
pp. 47-51 ◽  
Author(s):  
D. F. Evered ◽  
F. Sadoogh-Abasian

1. The disaccharide lactulose (galactosyl-β-1,4-fructose) was poorly absorbed from rat small intestine in vitro and human mouth in vivo.2. These results confirm indirect clinical evidence of poor absorption from the intestine.3. The presence of calcium ions, or absence of sodium ions, had no effect on lactulose absorption from the buccal cavity.4. The presence of ouabain, or absence of Na+, did not decrease the absorption of lactulose from small intestine.5. It is thought that the mode of transport, in both instances, is by passive diffusion with the concentration gradient.


1970 ◽  
Vol 38 (3) ◽  
pp. 287-295 ◽  
Author(s):  
I. L. Craft

1. A study of the length, total weight and weight per cm of the small intestine of virgin, pregnant and lactating rats has provided evidence for an increase in intestinal surface area in pregnancy and lactation. 2. Because of such alterations in morphology of the gut the absorption,in vivo, of the substrates studied, glucose and glycine, has been expressed in terms of amount transferred per loop and also per g dry weight of intestine. 3. Using these parameters the results show that pregnancy does not alter the ability of the upper jejunum to absorb glucose and glycine. In lactation there is a significant decrease in the transfer of these substances when expressed per g dry weight of intestine, but not in absolute terms.


1975 ◽  
Vol 248 (1) ◽  
pp. 143-149 ◽  
Author(s):  
A E Lane ◽  
D B Silk ◽  
M L Clark

1975 ◽  
Vol 228 (5) ◽  
pp. 1409-1414
Author(s):  
S Mishkin ◽  
M Yalovsky ◽  
JI Kessler

The uptake and esterification of micellar [3-H]oleate and [14-C] palmitate were uniform along the entire length of the small intestine in vivo. Fatty acids (FA) radioactivity taken up by the small intestine could be described in terms of four functionally distinct compartments analogous to those described in vitro. The KRP-extractable compartment (KEC) and albumin-extractable compartment (AEC) contained reversibly adherent unesterified FA radioactivity, while the tissue free and esterified FA compartments contained irreversibly bound radioactivity. Wheras 27% and 63% of FA uptake were reversibly bound in the KEC and AEC by the most proximal and most distal regions of the small intestine in vitro (15), less than 10% was contained in these compartments in vivo, independent of location. Linear inverse relationships were found betweeen tissue FA esterification and proportion of FA radioactivity present in the KEC,AEC, and the tissue free FA compartment in vivo. These observations allow for the possibility that FA molecules pass through these compartments prior to esterification.


2019 ◽  
Vol 123 (6) ◽  
pp. 619-626
Author(s):  
Yoshihiko Komuro ◽  
Takashi Kondo ◽  
Shingo Hino ◽  
Tatsuya Morita ◽  
Naomichi Nishimura

AbstractTo investigate whether oral intake of highly branched α-glucan isomaltodextrin (IMD) could stimulate ileal glucagon-like peptide-1 (GLP-1) secretion, we examined (1) the digestibility of IMD, (2) the digestion and absorption rates of IMD, in rat small intestine and (3) portal GLP-1 concentration in rats given IMD. In Expt 1, ileorectostomised rats were given a 3 % IMD diet for 10 d. Separately, a 16-h in vitro digestion of IMD, using porcine pancreatic α-amylase and brush-border membrane vesicles from rat small intestine, was conducted. In Expt 2, upon 24-h fasting, rats were given any of glucose, IMD and high-amylose maize starch (HAMS) (1 g/kg of body weight). In Expt 3, caecectomised rats were given 0·2 % neomycin sulphate and a 5 % IMD diet for 10 d. The in vivo and in vitro digestibility of IMD was 70–80 %. The fraction of IMD digested in vitro for the first 120 min was 67 % of that in maize starch. The AUC for 0–120 min of plasma glucose concentration was significantly lower in HAMS group and tended to be lower in IMD group than in the glucose group. Finally, we also observed that, when compared with control rats, glucose of IMD significantly stimulated and improved the concentration of portal active GLP-1 in antibiotic-administered, caecectomised rats. We concluded that IMD was slowly digested and the resulting glucose stimulated GLP-1 secretion in rat small intestine. Oral delivery of slowly released IMD glucose to the small intestine probably exerts important, yet unknown, physiological effects on the recipient.


1985 ◽  
Vol 248 (3) ◽  
pp. G261-G271 ◽  
Author(s):  
K. A. Hubel

The effects of extrinsic and intrinsic nerves on ion and water transport by the intestine are considered and discussed in terms of their possible physiological function. Adrenergic nerves enter the small intestine via mesenteric nerves. Adrenergic tone is usually absent in tissues in vitro but is present in vivo. The nerves increase absorption in response to homeostatic changes associated with acute depletion of extracellular fluid. Cholinergic tone that reduces fluid absorption or causes secretion has been detected in the small intestine of humans, dogs, and cats and in the colon of humans. Extrinsic cholinergic fibers generally do not affect ion transport in small intestine but probably do so in colon. Whether peptides liberated in the mucosa affect enterocytes directly is not clear. Studies on humans and rabbits suggest that the role of substance P is minor. The physiological roles of vasoactive intestinal polypeptide (VIP) and somatostatin remain to be defined. Intraluminal factors also affect ion and water transport. Mucosal rubbing, distension, and cholera toxin cause fluid secretion; acid solutions in the duodenum cause alkaline secretion; these stimuli and hypertonic glucose liberate serotonin into the lumen, the mesenteric venous blood, or both. It has been proposed that the enterochromaffin cell is an epithelial sensory cell that responds to noxious stimuli within the lumen by liberating serotonin. The serotonin initiates a neural reflex through a nicotinic ganglion to liberate a secretagogue that acts on the enterocyte. The function of VIP in this proposed reflex is unclear. The variety of intraluminal stimuli that influence epithelial function implies that there is more than one type of epithelial sensory cell (or sensory mechanism). Prostaglandins may mediate the alkaline secretion caused by acid in the duodenum. There may be other effective substances. Although it has been known for years that intraluminal stimuli affect the coordination of smooth muscle functions, it is not known whether similar stimuli also influence salt and water transport as a meal traverses the alimentary canal.


Sign in / Sign up

Export Citation Format

Share Document