Faculty Opinions recommendation of Diet-induced epigenetic regulation in vivo of the intestinal fructose transporter Glut5 during development of rat small intestine.

Author(s):  
Beverley Greenwood ◽  
Lee Tran
1979 ◽  
Vol 41 (1) ◽  
pp. 47-51 ◽  
Author(s):  
D. F. Evered ◽  
F. Sadoogh-Abasian

1. The disaccharide lactulose (galactosyl-β-1,4-fructose) was poorly absorbed from rat small intestine in vitro and human mouth in vivo.2. These results confirm indirect clinical evidence of poor absorption from the intestine.3. The presence of calcium ions, or absence of sodium ions, had no effect on lactulose absorption from the buccal cavity.4. The presence of ouabain, or absence of Na+, did not decrease the absorption of lactulose from small intestine.5. It is thought that the mode of transport, in both instances, is by passive diffusion with the concentration gradient.


1970 ◽  
Vol 38 (3) ◽  
pp. 287-295 ◽  
Author(s):  
I. L. Craft

1. A study of the length, total weight and weight per cm of the small intestine of virgin, pregnant and lactating rats has provided evidence for an increase in intestinal surface area in pregnancy and lactation. 2. Because of such alterations in morphology of the gut the absorption,in vivo, of the substrates studied, glucose and glycine, has been expressed in terms of amount transferred per loop and also per g dry weight of intestine. 3. Using these parameters the results show that pregnancy does not alter the ability of the upper jejunum to absorb glucose and glycine. In lactation there is a significant decrease in the transfer of these substances when expressed per g dry weight of intestine, but not in absolute terms.


1975 ◽  
Vol 248 (1) ◽  
pp. 143-149 ◽  
Author(s):  
A E Lane ◽  
D B Silk ◽  
M L Clark

1975 ◽  
Vol 228 (5) ◽  
pp. 1409-1414
Author(s):  
S Mishkin ◽  
M Yalovsky ◽  
JI Kessler

The uptake and esterification of micellar [3-H]oleate and [14-C] palmitate were uniform along the entire length of the small intestine in vivo. Fatty acids (FA) radioactivity taken up by the small intestine could be described in terms of four functionally distinct compartments analogous to those described in vitro. The KRP-extractable compartment (KEC) and albumin-extractable compartment (AEC) contained reversibly adherent unesterified FA radioactivity, while the tissue free and esterified FA compartments contained irreversibly bound radioactivity. Wheras 27% and 63% of FA uptake were reversibly bound in the KEC and AEC by the most proximal and most distal regions of the small intestine in vitro (15), less than 10% was contained in these compartments in vivo, independent of location. Linear inverse relationships were found betweeen tissue FA esterification and proportion of FA radioactivity present in the KEC,AEC, and the tissue free FA compartment in vivo. These observations allow for the possibility that FA molecules pass through these compartments prior to esterification.


2019 ◽  
Vol 123 (6) ◽  
pp. 619-626
Author(s):  
Yoshihiko Komuro ◽  
Takashi Kondo ◽  
Shingo Hino ◽  
Tatsuya Morita ◽  
Naomichi Nishimura

AbstractTo investigate whether oral intake of highly branched α-glucan isomaltodextrin (IMD) could stimulate ileal glucagon-like peptide-1 (GLP-1) secretion, we examined (1) the digestibility of IMD, (2) the digestion and absorption rates of IMD, in rat small intestine and (3) portal GLP-1 concentration in rats given IMD. In Expt 1, ileorectostomised rats were given a 3 % IMD diet for 10 d. Separately, a 16-h in vitro digestion of IMD, using porcine pancreatic α-amylase and brush-border membrane vesicles from rat small intestine, was conducted. In Expt 2, upon 24-h fasting, rats were given any of glucose, IMD and high-amylose maize starch (HAMS) (1 g/kg of body weight). In Expt 3, caecectomised rats were given 0·2 % neomycin sulphate and a 5 % IMD diet for 10 d. The in vivo and in vitro digestibility of IMD was 70–80 %. The fraction of IMD digested in vitro for the first 120 min was 67 % of that in maize starch. The AUC for 0–120 min of plasma glucose concentration was significantly lower in HAMS group and tended to be lower in IMD group than in the glucose group. Finally, we also observed that, when compared with control rats, glucose of IMD significantly stimulated and improved the concentration of portal active GLP-1 in antibiotic-administered, caecectomised rats. We concluded that IMD was slowly digested and the resulting glucose stimulated GLP-1 secretion in rat small intestine. Oral delivery of slowly released IMD glucose to the small intestine probably exerts important, yet unknown, physiological effects on the recipient.


Sign in / Sign up

Export Citation Format

Share Document