Individual Differences in Solution Time in Error-Free Problem Solving

1966 ◽  
Vol 5 (4) ◽  
pp. 306-309 ◽  
Author(s):  
F. H. FARLEY
2018 ◽  
Vol 32 (3) ◽  
pp. 97-105 ◽  
Author(s):  
Wangbing Shen ◽  
Yuan Yuan ◽  
Chaoying Tang ◽  
Chunhua Shi ◽  
Chang Liu ◽  
...  

Abstract. A considerable number of behavioral and neuroscientific studies on insight problem solving have revealed behavioral and neural correlates of the dynamic insight process; however, somatic correlates, particularly somatic precursors of creative insight, remain undetermined. To characterize the somatic precursor of spontaneous insight, 22 healthy volunteers were recruited to solve the compound remote associate (CRA) task in which a problem can be solved by either an insight or an analytic strategy. The participants’ peripheral nervous activities, particularly electrodermal and cardiovascular responses, were continuously monitored and separately measured. The results revealed a greater skin conductance magnitude for insight trials than for non-insight trials in the 4-s time span prior to problem solutions and two marginally significant correlations between pre-solution heart rate variability (HRV) and the solution time of insight trials. Our findings provide the first direct evidence that spontaneous insight in problem solving is a somatically peculiar process that is distinct from the stepwise process of analytic problem solving and can be represented by a special somatic precursor, which is a stronger pre-solution electrodermal activity and a correlation between problem solution time and certain HRV indicators such as the root mean square successive difference (RMSSD).


2020 ◽  
Author(s):  
Igor Grossmann ◽  
Nic M. Weststrate ◽  
Monika Ardelt ◽  
Justin Peter Brienza ◽  
Mengxi Dong ◽  
...  

Interest in wisdom in the cognitive sciences, psychology, and education has been paralleled by conceptual confusions about its nature and assessment. To clarify these issues and promote consensus in the field, wisdom researchers met in Toronto in July of 2019, resolving disputes through discussion. Guided by a survey of scientists who study wisdom-related constructs, we established a common wisdom model, observing that empirical approaches to wisdom converge on the morally-grounded application of metacognition to reasoning and problem-solving. After outlining the function of relevant metacognitive and moral processes, we critically evaluate existing empirical approaches to measurement and offer recommendations for best practices. In the subsequent sections, we use the common wisdom model to selectively review evidence about the role of individual differences for development and manifestation of wisdom, approaches to wisdom development and training, as well as cultural, subcultural, and social-contextual differences. We conclude by discussing wisdom’s conceptual overlap with a host of other constructs and outline unresolved conceptual and methodological challenges.


Behaviour ◽  
2021 ◽  
pp. 1-24
Author(s):  
Derek P. Harvey ◽  
Jeffrey M. Black

Abstract Animals that exploit resources from human-modified environments may encounter unique problems when searching for food. Pulling a string tied to a food reward (string-pulling task) is one of the most widespread methods of testing a species’ problem-solving performance in non-human animals. Performance in problem-solving tasks may be influenced by an individual’s characteristics and social interactions, especially in its natural habitat. We examined problem solving by free-ranging Steller’s jays (Cyanocitta stelleri) when extracting food from a string-pulling task presented in their natural habitat. During the study, seven of 50 jays successfully solved the task on their first to eighteenth experimental opportunity; solvers differed from nonsolvers by showing higher levels of persistence by pulling the string in more trials. Of the successful jays, five birds solved without observing others, while two birds were present during successful trials and subsequently completed the task. All seven jays demonstrated improvement in the task by using less string pulls over additional successful trials. Nineteen other jays in the population interacted with the apparatus and pulled the string, but not enough to acquire the food. These 19 jays were significantly bolder (shorter latencies to approach), more explorative (contacted more parts of the apparatus), and had observed solvers more than the 24 individuals that did not pull the string. These results indicate a broad spectrum of individual differences in propensity for solving novel tasks in our population of Steller’s jays.


Sign in / Sign up

Export Citation Format

Share Document