Biocontrol efficacy of Trichoderma asperellum ‐enriched coconut fibre against Fusarium wilts of cherry tomato

2020 ◽  
Vol 129 (4) ◽  
pp. 991-1003
Author(s):  
Z.A.E. Hasan ◽  
N.A.I. Mohd Zainudin ◽  
A. Aris ◽  
M.H. Ibrahim ◽  
M.T. Yusof
2002 ◽  
Vol 38 (SI 1 - 6th Conf EFPP 2002) ◽  
pp. 195-199 ◽  
Author(s):  
C. Alabouvette ◽  
Ch. Olivain

Many studies have demonstrated the capacity of non-pathogenic strains of F. oxysporum to control Fusarium diseases.<br />These non-pathogenic strains show several modes of action contributing to their biocontrol capacity. They are able to<br />compete for nutrients in the soil, affecting the rate of chlamydospore germination and the saprophytic growth of the<br />pathogen, diminishing the probability for the pathogen to reach the root surface. They are competing with the pathogen<br />at the root surface for colonization of infection sites, and inside the root where they induce plant defence reactions. By<br />triggering the defence reactions, they induce systemic resistance of the plant. Depending on the strain, and on the plant<br />species, these mechanisms are more or less important, leading to a more or less efficient biocontrol efficacy.


2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Keyu Sun ◽  
Ziwuzhen Wang ◽  
Xuanqing Zhang ◽  
Ze Wei ◽  
Xue Zhang ◽  
...  

Antagonistic yeast is a promising way to control postharvest fruit decay because of its safety and broad-spectrum resistance. However, the biocontrol efficacy of yeast is limited by environmental stress, such as oxidative stress.


PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0179957 ◽  
Author(s):  
Qiong Wu ◽  
Ruiyan Sun ◽  
Mi Ni ◽  
Jia Yu ◽  
Yaqian Li ◽  
...  

2021 ◽  
Vol 285 ◽  
pp. 110095
Author(s):  
Leo Sabatino ◽  
Salvatore La Bella ◽  
Georgia Ntatsi ◽  
Giovanni Iapichino ◽  
Fabio D’Anna ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Valliappan Karuppiah ◽  
Lu Zhixiang ◽  
Hongyi Liu ◽  
Murugappan Vallikkannu ◽  
Jie Chen

Abstract Background Retention of agricultural bio-mass residues without proper treatment could affect the subsequent plant growth. In the present investigation, the co-cultivation of genetically engineered T. asperellum and B. amyloliquefaciens has been employed for multiple benefits including the enrichment of lignocellulose biodegradation, plant growth, defense potential and disease resistance. Results The Vel1 gene predominantly regulates the secondary metabolites, sexual and asexual development as well as cellulases and polysaccharide hydrolases productions. Overexpression mutant of the Trichoderma asperellum Vel1 locus (TA OE-Vel1) enhanced the activity of FPAase, CMCase, PNPCase, PNPGase, xylanase I, and xylanase II through the regulation of transcription regulating factors and the activation of cellulase and xylanase encoding genes. Further, these genes were induced upon co-cultivation with Bacillus amyloliquefaciens (BA). The co-culture of TA OE-Vel1 + BA produced the best composition of enzymes and the highest biomass hydrolysis yield of 89.56 ± 0.61%. The co-culture of TA OE-Vel1 + BA increased the corn stover degradation by the secretion of cellulolytic enzymes and maintained the C/N ratio of the corn stover amended soil. Moreover, the TA OE-Vel1 + BA increased the maize plant growth, expression of defense gene and disease resistance against Fusarium verticillioides and Cohilohorus herostrophus. Conclusion The co-cultivation of genetically engineered T. asperellum and B. amyloliquefaciens could be utilized as a profound and meaningful technique for the retention of agro residues and subsequent plant growth.


Sign in / Sign up

Export Citation Format

Share Document