scholarly journals Modes of action of non-pathogenic strains of Fusarium oxysporum in controlling Fusarium wilts

2002 ◽  
Vol 38 (SI 1 - 6th Conf EFPP 2002) ◽  
pp. 195-199 ◽  
Author(s):  
C. Alabouvette ◽  
Ch. Olivain

Many studies have demonstrated the capacity of non-pathogenic strains of F. oxysporum to control Fusarium diseases.<br />These non-pathogenic strains show several modes of action contributing to their biocontrol capacity. They are able to<br />compete for nutrients in the soil, affecting the rate of chlamydospore germination and the saprophytic growth of the<br />pathogen, diminishing the probability for the pathogen to reach the root surface. They are competing with the pathogen<br />at the root surface for colonization of infection sites, and inside the root where they induce plant defence reactions. By<br />triggering the defence reactions, they induce systemic resistance of the plant. Depending on the strain, and on the plant<br />species, these mechanisms are more or less important, leading to a more or less efficient biocontrol efficacy.

2016 ◽  
Vol 13 (2) ◽  
pp. 253-260
Author(s):  
Baghdad Science Journal

This study was conducted to evaluate the efficiency of some chemicals and biological agents to induce systemic resistance (ISR) against to wheat common bunt disease caused by the two species of fungus Tilletia tritici (Bjerk.) Wint (T. caries (Dac.) Tul.) and T. laevis Kuhn (T. foetida (Wall.) Liro. Trails in the efforts to find an alternative, safe and environmentally friendly means to control the disease. Results of this study which carried out during two consecutive seasons for the years 2012 - 2013 and 2013 - 2014 at two different environmental locations. Seed treatment by (SA 100 and 200 mg/L, 500 ?–aminobutyric acid (BABA) and 1000 mg/L, Effective Microorganisms (EM1) 40 and 150 ml/kg seeds) have led to high significant reduction in the percentage of common bunt compared with the control (plants resulting from the seeds contaminated non- treatment), While foliar treatment showed some significant differences, especially in the experiment carried out at the fields of College of Agriculture - Baghdad University compared with experiments carried out in the fields of Faculty of Agricultural Sciences -University of Sulaimania, which did not showed significant differences in most treatments. The treatment with Effective microorganisms was found efficient in reducing the infection rate compared with SA and BABA.


Author(s):  
T. N. Shafikova ◽  
Yu. V. Omelichkina

The study of plant defence mechanisms in response to pathogens in the mid-20th century resulted in Harold Flor’s gene-for-gene interaction hypothesis, which became recognised as central to the study of phytoimmunity. According to this theory, the outcome of interactions in plant – pathogen phytopathosystems – i.e. compatibility or incompatibility – is controlled genetically in interacting organisms and determined by the presence of specific genes in both pathogen and plant: resistance genes in the plant and avirulence genes in pathogen. The latest achievements in phytoimmunology, obtained with the help of modern molecular biology and bioinformatics methods, have made a significant contribution to the classical understanding of plant immunity and provided grounds for a modern concept of phytoimmunity consisting in the “zig-zag model” developed by Jonathan Jones and Jefferey Dangl. Plant immunity is currently understood as being determined by an innate multi-layer immune system involving various structures and mechanisms of specific and non-specific immunity. Recognition by plant membrane receptors of conservative molecular patterns associated with microorganisms, as well as molecules produced during cell wall disruption by pathogen hydrolytic enzymes forms a basic non-specific immune response in the plant. Detection of pathogen effector molecules by plant intra-cellular receptors triggers a specific effector-triggered immunity, resulting in the development of the hypersensitive response, systemic resistance and immune memory of the plant. Virulence factors and pathogen attack strategies on the one hand, and mechanisms of plant immune protection on the other, are the result of one form of constant co-evolution, often termed an “evolutionary arms race”. This paper discusses the main principles of Flor's classical “gene-for-gene interaction” theory as well as the molecular-genetic processes of plant innate immunity, their mechanisms and participants in light of contemporary achievements in phytoimmunology.


2000 ◽  
Vol 13 (11) ◽  
pp. 1177-1183 ◽  
Author(s):  
Linda C. Dekkers ◽  
Ine H. M. Mulders ◽  
Claartje C. Phoelich ◽  
Thomas F. C. Chin-A-Woeng ◽  
André H. M. Wijfjes ◽  
...  

We show that the disease tomato foot and root rot caused by the pathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici can be controlled by inoculation of seeds with cells of the efficient root colonizer Pseudomonas fluorescens WCS365, indicating that strain WCS365 is a bio-control strain. The mechanism for disease suppression most likely is induced systemic resistance. P. fluorescens strain WCS365 and P. chlororaphis strain PCL1391, which acts through the production of the antibiotic phenazine-1-carboxamide, were differentially labeled using genes encoding autofluorescent proteins. Inoculation of seeds with a 1:1 mixture of these strains showed that, at the upper part of the root, the two cell types were present as microcolonies of either one or both cell types. Microcolonies at the lower root part were predominantly of one cell type. Mixed inoculation tended to improve biocontrol in comparison with single inoculations. In contrast to what was observed previously for strain PCL1391, mutations in various colonization genes, including sss, did not consistently decrease the biocontrol ability of strain WCS365. Multiple copies of the sss colonization gene in WCS365 improved neither colonization nor biocontrol by this strain. However, introduction of the sss-containing DNA fragment into the poor colonizer P. fluorescens WCS307 and into the good colonizer P. fluorescens F113 increased the competitive tomato root tip colonization ability of the latter strains 16- to 40-fold and 8- to 16-fold, respectively. These results show that improvement of the colonization ability of wild-type Pseudomonas strains by genetic engineering is a realistic goal.


2008 ◽  
Vol 35 (No. 4) ◽  
pp. 151-161 ◽  
Author(s):  
T. Nečas ◽  
F. Kobza

The resistance of Chinese asters to <I>Fusarium</I> wilt was tested by artificially inoculating the root systems. A mixture of <I>Fusarium</I> isolates was prepared with a concentration of about 10<sup>4</sup>–10<sup>9</sup> propagules per litre of the pathogen. 63 cultivars of both domestic and foreign origin were evaluated in the 1<sup>st</sup> year, 95 in the 2<sup>nd</sup> year and 89 in the 3<sup>rd</sup> year. Clear, statistically valid differences in mortality, both with experiments involving artificial inoculations and considering natural infections, make it possible to divide aster varieties into three groups based in their resistance to infections. The first set can be described as resistant. This includes the Matsumoto, Einf. Madeleine and Americká kráska series, and several others. The second set can be described as being moderately resistant. This includes the Chryzantémokvěté and Standy series, and the cultivars Matsumoto Pink, Princes Armida and Jitka. The third set can be described as sensitive. This includes the Průhonický trpaslík, Jehlicovité and Pastel series and several others. A statistical analysis of the results shows that the Einf. Madeleine series of cultivars is the most resistant to <I>Fusarium</I> wilt. This series is phenotypically similar to the original botanical species. Resistance was evaluated by recording the differences in mortality rates between artificially-inoculated plants and non-inoculated group (controls).


2020 ◽  
Vol 129 (4) ◽  
pp. 991-1003
Author(s):  
Z.A.E. Hasan ◽  
N.A.I. Mohd Zainudin ◽  
A. Aris ◽  
M.H. Ibrahim ◽  
M.T. Yusof

Sign in / Sign up

Export Citation Format

Share Document