scholarly journals Perfusion of isolated rat kidney with Mesenchymal Stromal Cells/Extracellular Vesicles prevents ischaemic injury

2017 ◽  
Vol 21 (12) ◽  
pp. 3381-3393 ◽  
Author(s):  
Marilena Gregorini ◽  
Valeria Corradetti ◽  
Eleonora Francesca Pattonieri ◽  
Chiara Rocca ◽  
Samantha Milanesi ◽  
...  
1991 ◽  
Vol 121 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Delores M. Bowers-Komro ◽  
Donald B. McCormick

2021 ◽  
Vol 22 (13) ◽  
pp. 6837
Author(s):  
Pauline Rozier ◽  
Marie Maumus ◽  
Claire Bony ◽  
Alexandre Thibault Jacques Maria ◽  
Florence Sabatier ◽  
...  

Systemic sclerosis (SSc) is a complex disorder resulting from dysregulated interactions between the three main pathophysiological axes: fibrosis, immune dysfunction, and vasculopathy, with no specific treatment available to date. Adipose tissue-derived mesenchymal stromal cells (ASCs) and their extracellular vesicles (EVs) have proved efficacy in pre-clinical murine models of SSc. However, their precise action mechanism is still not fully understood. Because of the lack of availability of fibroblasts isolated from SSc patients (SSc-Fb), our aim was to determine whether a TGFβ1-induced model of human myofibroblasts (Tβ-Fb) could reproduce the characteristics of SSc-Fb and be used to evaluate the anti-fibrotic function of ASCs and their EVs. We found out that Tβ-Fb displayed the main morphological and molecular features of SSc-Fb, including the enlarged hypertrophic morphology and expression of several markers associated with the myofibroblastic phenotype. Using this model, we showed that ASCs were able to regulate the expression of most myofibroblastic markers on Tβ-Fb and SSc-Fb, but only when pre-stimulated with TGFβ1. Of interest, ASC-derived EVs were more effective than parental cells for improving the myofibroblastic phenotype. In conclusion, we provided evidence that Tβ-Fb are a relevant model to mimic the main characteristics of SSc fibroblasts and investigate the mechanism of action of ASCs. We further reported that ASC-EVs are more effective than parental cells suggesting that the TGFβ1-induced pro-fibrotic environment may alter the function of ASCs.


2012 ◽  
Vol 1820 (12) ◽  
pp. 1940-1950 ◽  
Author(s):  
Fatemeh Shaki ◽  
Mir-Jamal Hosseini ◽  
Mahmoud Ghazi-Khansari ◽  
Jalal Pourahmad

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Di Gu ◽  
Xiangyu Zou ◽  
Guanqun Ju ◽  
Guangyuan Zhang ◽  
Erdun Bao ◽  
...  

Background. The immoderation of mitochondrial fission is one of the main contributors in ischemia reperfusion injury (IRI) and mesenchymal stromal cells (MSCs) derived extracellular vesicles have been regarded as a potential therapy method. Here, we hypothesized that extracellular vesicles (EVs) derived from human Wharton Jelly mesenchymal stromal cells (hWJMSCs) ameliorate acute renal IRI by inhibiting mitochondrial fission through miR-30b/c/d.Methods. EVs isolated from the condition medium of MCS were injected intravenously in rats immediately after monolateral nephrectomy and renal pedicle occlusion for 45 minutes. Animals were sacrificed at 24 h after reperfusion and samples were collected. MitoTracker Red staining was used to see the morphology of the mitochondria. The expression of DRP1 was measured by western blot. miR-30 in EVs and rat tubular epithelial cells was assessed by qRT-PCR. Apoptosis pathway was identified by immunostaining.Results. We found that the expression of miR-30 in injured kidney tissues was declined and mitochondrial dynamics turned to fission. But they were both restored in EVs group in parallel with reduced cell apoptosis. What is more, when the miR-30 antagomirs were used to reduce the miRNA levels, all the related effects of EVs reduced remarkably.Conclusion. A single administration of hWJMSC-EVs could protect the kidney from IRI by inhibition of mitochondrial fission via miR-30.


Sign in / Sign up

Export Citation Format

Share Document