scholarly journals O053: Anti-inflammatory effect of caffeic acid phenethyl ester in experimental periodontitis

2018 ◽  
Vol 45 ◽  
pp. 24-24
2021 ◽  
Author(s):  
Esra DEMİR ◽  
Feyza Otan ÖZDEN ◽  
Bahattin AVCI

Abstract Caffeic acid phenethyl ester (CAPE) is an active component of propolis extracts and has anti-inflammatory, antioxidant, immunomodulatory activities. This study aims to investigate the anti-inflammatory effect of two different dosages of CAPE on lipopolysaccharide-induced experimental periodontitis (EP). Forty Sprague Dawley rats were randomly divided into four groups: control, EP, EP treated with 5 µmol/kg/day of CAPE (EP + CAPE 5), and EP treated with 10 µmol/kg/day of CAPE (EP + CAPE 10). Followed by the EP, CAPE was administered intraperitoneally to the EP + CAPE groups for 28 days. Samples were investigated biochemically using an enzyme linked immunoassay (ELISA) kit and alveolar bone loss was measured morphometrically. In both of the CAPE groups, the levels of IL-1β and TNF-α in the gingiva were significantly lower than those in the EP group (p < 0.001). The decrease in tissue levels of TNF-α was greater in the EP + CAPE 10 group than in the EP + CAPE 5 group in a dose-dependent manner. Serum analysis of the cytokines showed no significant difference between the groups. Within the limits of this study, CAPE showed its anti-inflammatory effect by reducing pro-inflammatory cytokines in gingiva and is claimed to be a novel agent in improving the results of periodontal therapy without any known side effects.


2017 ◽  
Vol 81 ◽  
pp. 61-68 ◽  
Author(s):  
Umut Yiğit ◽  
Fatma Yeşim Kırzıoğlu ◽  
Abdülhadi Cihangir Uğuz ◽  
Mustafa Nazıroğlu ◽  
Özlem Özmen

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Luana Chiquetto Paracatu ◽  
Carolina Maria Quinello Gomes Faria ◽  
Camila Quinello ◽  
Camila Rennó ◽  
Patricia Palmeira ◽  
...  

Numerous anti-inflammatory properties have been attributed to caffeic acid phenethyl ester (CAPE), an active component of propolis. NADPH oxidases are multienzymatic complexes involved in many inflammatory diseases. Here, we studied the importance of the CAPE hydrophobicity on cell-free antioxidant capacity, inhibition of the NADPH oxidase and hypochlorous acid production, and release of TNF-α and IL-10 by activated leukocytes. The comparison was made with the related, but less hydrophobic, caffeic and chlorogenic acids. Cell-free studies such as superoxide anion scavenging assay, triene degradation, and anodic peak potential(Epa)measurements showed that the alterations in the hydrophobicity did not provoke significant changes in the oxidation potential and antiradical potency of the tested compounds. However, only CAPE was able to inhibit the production of superoxide anion by activated leukocytes. The inhibition of the NADPH oxidase resulted in the blockage of production of hypochlorous acid. Similarly, CAPE was the more effective inhibitor of the release of TNF-α and IL-10 byStaphylococcus aureusstimulated cells. In conclusion, the presence of the catechol moiety and the higher hydrophobicity were essential for the biological effects. Considering the involvement of NADPH oxidases in the genesis and progression of inflammatory diseases, CAPE should be considered as a promising anti-inflammatory drug.


2017 ◽  
Vol 59 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Fatma Y. Kırzıoğlu ◽  
Memduha Tözüm Bulut ◽  
Burak Doğan ◽  
Özlem Fentoğlu ◽  
Özlem Özmen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document