Sexual antagonism and meiotic drive cause stable linkage disequilibrium and favour reduced recombination on the X chromosome

2016 ◽  
Vol 29 (6) ◽  
pp. 1247-1256 ◽  
Author(s):  
W. T. Rydzewski ◽  
S. A. Carioscia ◽  
G. Liévano ◽  
V. D. Lynch ◽  
M. M. Patten
Genetics ◽  
2002 ◽  
Vol 161 (4) ◽  
pp. 1651-1659 ◽  
Author(s):  
Elena de la Casa-Esperón ◽  
J Concepción Loredo-Osti ◽  
Fernando Pardo-Manuel de Villena ◽  
Tammi L Briscoe ◽  
Jan Michel Malette ◽  
...  

AbstractWe observed that maternal meiotic drive favoring the inheritance of DDK alleles at the Om locus on mouse chromosome 11 was correlated with the X chromosome inactivation phenotype of (C57BL/ 6-Pgk1a × DDK)F1 mothers. The basis for this unexpected observation appears to lie in the well-documented effect of recombination on meiotic drive that results from nonrandom segregation of chromosomes. Our analysis of genome-wide levels of meiotic recombination in females that vary in their X-inactivation phenotype indicates that an allelic difference at an X-linked locus is responsible for modulating levels of recombination in oocytes.


PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27254 ◽  
Author(s):  
Sarah J. Christianson ◽  
Cara L. Brand ◽  
Gerald S. Wilkinson
Keyword(s):  

Genetics ◽  
1977 ◽  
Vol 86 (1) ◽  
pp. 199-212
Author(s):  
G Filippi ◽  
A Rinaldi ◽  
R Palmarino ◽  
E Seravalli ◽  
M Siniscalco

ABSTRACT The distribution of four X-linked mutants (G6PD, Deutan, Protan and Xg) among lowland and once highly malarial populations of Sardinia discloses a clear-cut example of linkage disequilibrium between two of them (G6PD and Protan). In the same populations the distribution of G6PD-deficiency versus colorblindness of the Deutan type and the Xg blood-group is not significantly different from that expected at equilibrium. These data suggest indirectly that the loci for G6PD and Protan may be nearer to one another than those for G6PD and Deutan.


2021 ◽  
Author(s):  
Daniel J. Cotter ◽  
Timothy H. Webster ◽  
Melissa A. Wilson

AbstractMutation, recombination, selection, and demography affect genetic variation across the genome. Increased mutation and recombination both lead to increases in genetic diversity in a region-specific manner, while complex demographic patterns shape patterns of diversity on a more global scale. The X chromosome is particularly interesting because it contains several distinct regions that are subject to different combinations and strengths of these processes, notably the pseudoautosomal regions (PARs) and the X-transposed region (XTR). The X chromosome thus can serve as a unique model for studying how genetic and demographic forces act in different contexts to shape patterns of observed variation. Here we investigate diversity, divergence, and linkage disequilibrium in each region of the X chromosome using genomic data from 26 human populations. We find that both diversity and substitution rate are consistently elevated in PAR1 and the XTR compared to the rest of the X chromosome. In contrast, linkage disequilibrium is lowest in PAR1 and highest on the non-recombining X chromosome, with the XTR falling in between, suggesting that the XTR (usually included in the non-recombining X) may need to be considered separately in future studies. We also observed strong population-specific effects on genetic diversity; not only does genetic variation differ on the X and autosomes among populations, but the effects of linked selection on the X relative to autosomes have been shaped by population-specific history. The substantial variation in patterns of variation across these regions provides insight into the unique evolutionary history contained within the X chromosome.Significance StatementDemography and selection affect the X chromosome differently from non-sex chromosomes. However, the X chromosome can be subdivided into multiple distinct regions that facilitate even more fine-scaled assessment of these processes. Here we study regions of the human X chromosome in 26 populations to find evidence that recombination may be mutagenic in humans and that the X-transposed region may undergo recombination. Further we observe that the effects of selection and demography act differently on the X chromosome relative to the autosomes across human populations. Together, our results highlight profound regional differences across the X chromosome, simultaneously making it an ideal system for exploring the action of evolutionary forces as well as necessitating its careful consideration and treatment in genomic analyses.


2006 ◽  
Vol 34 (4) ◽  
pp. 562-565 ◽  
Author(s):  
C. Montchamp-Moreau

The sex-ratio trait, reported in a dozen Drosophila species, is a type of naturally occurring meiotic drive in which the driving elements are located on the X chromosome. Typically, as the result of a shortage of Y-bearing spermatozoa, males carrying a sex-ratio X chromosome produce a large excess of female offspring. The presence of sex-ratio chromosomes in a species can have considerable evolutionary consequences, because they can affect individual fitness and trigger extended intragenomic conflict. Here, I present the main results of the study performed in Drosophila simulans. In this species, the loss of Y-bearing spermatozoa is related to the inability of the Y chromosome sister-chromatids to separate properly during meiosis II. Fine genetic mapping has shown that the primary sex-ratio locus on the X chromosome contains two distorter elements acting synergistically, both of which are required for drive expression. One element has been genetically mapped to a tandem duplication. To infer the natural history of the trait, the pattern of DNA sequence polymorphism in the surrounding chromosomal region is being analysed in natural populations of D. simulans harbouring sex-ratio X chromosomes. Initial results have revealed the recent spread of a distorter allele.


Heredity ◽  
2018 ◽  
Vol 122 (6) ◽  
pp. 906-915 ◽  
Author(s):  
Cécile Courret ◽  
Pierre R. Gérard ◽  
David Ogereau ◽  
Matthieu Falque ◽  
Laurence Moreau ◽  
...  

Genetics ◽  
2002 ◽  
Vol 161 (4) ◽  
pp. 1551-1559 ◽  
Author(s):  
Massimo Belloni ◽  
Patrizia Tritto ◽  
Maria Pia Bozzetti ◽  
Gioacchino Palumbo ◽  
Leonard G Robbins

AbstractDrosophila melanogaster males deficient for the crystal (cry) locus of the Y chromosome that carry between 15 and 60 copies of the X-linked Stellate (Ste) gene are semisterile, have elevated levels of nondisjunction, produce distorted sperm genotype ratios (meiotic drive), and evince hyperactive transcription of Ste in the testes. Ste seems to be the active element in this system, and it has been proposed that the ancestral Ste gene was “selfish” and increased in frequency because it caused meiotic drive. This hypothetical evolutionary history is based on the idea that Ste overexpression, and not the lack of cry, causes the meiotic drive of cry– males. To test whether this is true, we have constructed a Ste-deleted X chromosome and examined the phenotype of Ste–/cry– males. If hyperactivity of Ste were necessary for the transmission defects seen in cry– males, cry– males completely deficient for Ste would be normal. Although it is impossible to construct a completely Ste– genotype, we find that Ste–/cry– males have exactly the same phenotype as Ste+/cry– males. The deletion of all X chromosome Ste copies not only does not eliminate meiotic drive and nondisjunction, but it also does not even reduce them below the levels produced when the X carries 15 copies of Ste.


Author(s):  
Lynn E. DeLisi ◽  
Nigel Wellman ◽  
John Stewart ◽  
Angela B. Smith ◽  
Mike Churchman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document