scholarly journals Reduced Polymorphism Associated with X Chromosome Meiotic Drive in the Stalk-Eyed Fly Teleopsis dalmanni

PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27254 ◽  
Author(s):  
Sarah J. Christianson ◽  
Cara L. Brand ◽  
Gerald S. Wilkinson
Keyword(s):  
Genetics ◽  
2002 ◽  
Vol 161 (4) ◽  
pp. 1651-1659 ◽  
Author(s):  
Elena de la Casa-Esperón ◽  
J Concepción Loredo-Osti ◽  
Fernando Pardo-Manuel de Villena ◽  
Tammi L Briscoe ◽  
Jan Michel Malette ◽  
...  

AbstractWe observed that maternal meiotic drive favoring the inheritance of DDK alleles at the Om locus on mouse chromosome 11 was correlated with the X chromosome inactivation phenotype of (C57BL/ 6-Pgk1a × DDK)F1 mothers. The basis for this unexpected observation appears to lie in the well-documented effect of recombination on meiotic drive that results from nonrandom segregation of chromosomes. Our analysis of genome-wide levels of meiotic recombination in females that vary in their X-inactivation phenotype indicates that an allelic difference at an X-linked locus is responsible for modulating levels of recombination in oocytes.


2006 ◽  
Vol 34 (4) ◽  
pp. 562-565 ◽  
Author(s):  
C. Montchamp-Moreau

The sex-ratio trait, reported in a dozen Drosophila species, is a type of naturally occurring meiotic drive in which the driving elements are located on the X chromosome. Typically, as the result of a shortage of Y-bearing spermatozoa, males carrying a sex-ratio X chromosome produce a large excess of female offspring. The presence of sex-ratio chromosomes in a species can have considerable evolutionary consequences, because they can affect individual fitness and trigger extended intragenomic conflict. Here, I present the main results of the study performed in Drosophila simulans. In this species, the loss of Y-bearing spermatozoa is related to the inability of the Y chromosome sister-chromatids to separate properly during meiosis II. Fine genetic mapping has shown that the primary sex-ratio locus on the X chromosome contains two distorter elements acting synergistically, both of which are required for drive expression. One element has been genetically mapped to a tandem duplication. To infer the natural history of the trait, the pattern of DNA sequence polymorphism in the surrounding chromosomal region is being analysed in natural populations of D. simulans harbouring sex-ratio X chromosomes. Initial results have revealed the recent spread of a distorter allele.


Heredity ◽  
2018 ◽  
Vol 122 (6) ◽  
pp. 906-915 ◽  
Author(s):  
Cécile Courret ◽  
Pierre R. Gérard ◽  
David Ogereau ◽  
Matthieu Falque ◽  
Laurence Moreau ◽  
...  

Genetics ◽  
2002 ◽  
Vol 161 (4) ◽  
pp. 1551-1559 ◽  
Author(s):  
Massimo Belloni ◽  
Patrizia Tritto ◽  
Maria Pia Bozzetti ◽  
Gioacchino Palumbo ◽  
Leonard G Robbins

AbstractDrosophila melanogaster males deficient for the crystal (cry) locus of the Y chromosome that carry between 15 and 60 copies of the X-linked Stellate (Ste) gene are semisterile, have elevated levels of nondisjunction, produce distorted sperm genotype ratios (meiotic drive), and evince hyperactive transcription of Ste in the testes. Ste seems to be the active element in this system, and it has been proposed that the ancestral Ste gene was “selfish” and increased in frequency because it caused meiotic drive. This hypothetical evolutionary history is based on the idea that Ste overexpression, and not the lack of cry, causes the meiotic drive of cry– males. To test whether this is true, we have constructed a Ste-deleted X chromosome and examined the phenotype of Ste–/cry– males. If hyperactivity of Ste were necessary for the transmission defects seen in cry– males, cry– males completely deficient for Ste would be normal. Although it is impossible to construct a completely Ste– genotype, we find that Ste–/cry– males have exactly the same phenotype as Ste+/cry– males. The deletion of all X chromosome Ste copies not only does not eliminate meiotic drive and nondisjunction, but it also does not even reduce them below the levels produced when the X carries 15 copies of Ste.


Genetics ◽  
1990 ◽  
Vol 125 (1) ◽  
pp. 51-76
Author(s):  
K G Golic

Abstract Segregation distortion in Drosophila melanogaster is the result of an interaction between the genetic elements Sd, a Rsp sensitive to Sd, and an array of modifiers, that results in the death of sperm carrying Rsp. A stock (designated M-5; cn bw) has been constructed which has the property of inducing the partial loss of sensitivity from previously sensitive cn bw chromosomes, the partial loss of distorting ability from SD chromosomes, and a concomitant acquisition of modifiers on the X chromosome and possibly also on the autosomes. By several criteria the changes exhibited under the influence of M-5; cn bw are characteristic of the transposable-element systems which produce hybrid dysgenesis. In the first place, the magnitude of these effects depends on the nature of the crosses performed. The analogy is further strengthened by the observation that the changes induced by M-5; cn bw share other stigmata of Drosophila transposable-element systems, including high sterility among the progeny of outcrosses, and the production of chromosomal rearrangements. The possible relationship of this system to the P, I and hobo transposable element systems is discussed, as well as its bearing on aspects of the Segregation Distorter phenomenon which have yet to be explained.


2016 ◽  
Vol 29 (6) ◽  
pp. 1247-1256 ◽  
Author(s):  
W. T. Rydzewski ◽  
S. A. Carioscia ◽  
G. Liévano ◽  
V. D. Lynch ◽  
M. M. Patten

2020 ◽  
Author(s):  
Josephine A Reinhardt ◽  
Richard H. Baker ◽  
Aleksey V. Zimin ◽  
Chloe Ladias ◽  
Kimberly A Paczolt ◽  
...  

AbstractSome stalk-eyed flies in the genus Teleopsis carry selfish genetic elements that induce sex ratio (SR) meiotic drive and impact the fitness of male and female carriers. Here, we produce a chromosome-level genome assembly of the stalk-eyed fly, T. dalmanni, to elucidate the pattern of genomic divergence associated with the presence of drive elements. We find evidence for multiple nested inversions along the sex ratio haplotype and widespread differentiation and divergence between the inversion types along the entire X chromosome. In addition, the genome contains tens of thousands of transposable element (TE) insertions and hundreds of transcriptionally active TE families that have produced new insertions. Moreover, we find that many TE families are expressed at a significantly higher level in SR male testis, suggesting a molecular connection between these two types of selfish genetic elements in this species. We identify T. dalmanni orthologs of genes involved in genome defense via the piRNA pathway, including core members maelstrom, piwi and Argonaute3, that are diverging in sequence, expression or copy number between the SR and standard (ST) chromosomes, and likely influence TE regulation in flies carrying a sex ratio X chromosome.


2005 ◽  
Vol 272 (1576) ◽  
pp. 2097-2103 ◽  
Author(s):  
Philip M Johns ◽  
L. LaReesa Wolfenbarger ◽  
Gerald S Wilkinson

Previous studies on the stalk-eyed fly, Cyrtodiopsis dalmanni , have shown that males with long eye-stalks win contests and are preferred by females, and artificial selection on male relative eye span alters brood sex-ratios. Subsequent theory proposes that X-linked meiotic drive can catalyse the evolution of mate preferences when drive is linked to ornament genes. Here we test this prediction by mapping meiotic drive and quantitative trait loci (QTL) for eye span. To map QTL we genotyped 24 microsatellite loci using 1228 F2 flies from two crosses between lines selected for long or short eye span. The crosses differed by presence or absence of a drive X chromosome, X D , in the parental male. Linkage analysis reveals that X D dramatically reduces recombination between X and X D chromosomes. In the X D cross, half of the F2 males carried the drive haplotype, produced partially elongated spermatids and female-biased broods, and had shorter eye span. The largest QTL mapped 1.3 cM from drive on the X chromosome and explained 36% of the variation in male eye span while another QTL mapped to an autosomal region that suppresses drive. These results indicate that selfish genetic elements that distort the sex-ratio can influence the evolution of exaggerated traits.


Genetics ◽  
1972 ◽  
Vol 71 (4) ◽  
pp. 597-606
Author(s):  
Robert A Voelker

ABSTRACT In D. affinis "sex ratio" (sr), a form of meiotic drive characterized by the production of mostly or only female progeny by certain males, is associated with two different X chromosome sequences, XS-I XL-II and XS-II XL-IV. The behavior of the two sequences differed, depending on the Y chromosome constitution, being either Y  L or 0. Males with sequence XS-II XL-IV and Y  L produced progenies with nearly normal sex ratios; males with the same X chromosome sequence but in the absence of a Y chromosome in some cases gave progenies with nearly normal sex ratios but in other cases gave progenies which tended toward phenotypic sr. Males with sequence XS-I XL-II and Y  L gave progenies which were characteristically sr (0.97–0.98 females); in the absence of a Y chromosome males with this sequence produced progenies which were virtually all-male. This latter finding is presumably identical to Novitski's (1947) "male sex ratio" (msr). The interpretation offered here attributes msr to an interaction between sr sequence XS-I XL-II and the 0 condition. A general consideration of the available data on sr in D. affinis is presented.


Sign in / Sign up

Export Citation Format

Share Document